

POSIDRIVE® FDS 5000

Projektierhandbuch

Einbau

Anschluss

Zubehör

ab V 5.6-S

Inhaltsverzeichnis

1	Einle	eitung .		5
	1.1	Über die	ses Handbuch	. 5
	1.2	Weiterfü	hrende Dokumentationen	. 5
	1.3	Weitere	Unterstützung	. 6
	1.4	Abkürzu	ngen und Formelzeichen	. 7
	1.5	Symbole	e, Kennzeichen, Marken	. 9
2	Sich	erheitsl	hinweise	.11
	2.1	Bestand	teil des Produkts	.11
	2.2	Bestimm	nungsgemäße Verwendung	.11
	2.3	Risikobe	eurteilung	.11
	2.4	Einsatzu	ımgebung	12
	2.5	Qualifizi	ertes Personal	13
	2.6	Transpo	rt und Lagerung	13
	2.7	Einbau u	und Anschluss	14
	2.8	Inbetrieb	onahme, Betrieb und Service	15
	2.9	Entsorgu	ung	16
	2.10	Restgefa	ahren	16
	2.11	UL-konfo	ormer Einsatz	16
	2.12	Darstellu	ung von Sicherheitshinweisen	18
3	Tech	nnische	Daten	.19
	3.1	Typenbe	zeichnung	19
	3.2	Baugröß	en	19
	3.3	Allgemei	ine Daten der Umrichter	20
		3.3.1	Transport-, Lagerungs- und Betriebsumgebung	20
		3.3.2	Gerätemerkmale	20
		3.3.3	Gewicht	21

WE KEEP THINGS MOVING

Inhaltsverzeichnis

Projektierhandbuch POSIDRIVE® FDS 5000

	3.4	Elektrisc	he Daten
		3.4.1	Baugröße 0 (BG 0): FDS 5007A bis FDS 5015A
		3.4.2	Baugröße 1 (BG 1): FDS 5022A bis FDS 5075A
		3.4.3	Verlustleistungsdaten der Umrichter nach EN 50598
		3.4.4	Verlustleistungsdaten des Zubehörs
		3.4.5	Derating durch Erhöhen der Taktfrequenz
	3.5	Abmess	ungen
		3.5.1	BG 0 bis BG 1: FDS 5007A bis FDS 5075A
	3.6	Bremsw	derstände FDS 5xxxA
		3.6.1	FZMU, FZZMU
		3.6.2	GVADU, GBADU
		3.6.3	Unterbaubremswiderstand RB 5000
	3.7	Ausgang	sdrossel
4	Einb	au	37
	4.1	Umrichte	er in den Schaltschrank einbauen
	4.2	Zubehör	
		4.2.1	Unterbaubremswiderstand und Umrichter einbauen
		4.2.2	EMV-Schirmblech oder Bremsmodul anbauen
			4.2.2.1 EMV-Schirmblech EM 5000 anbauen
			4.2.2.2 Bremsmodul BRM 5000 anbauen
		4.2.3	Klemmenerweiterung LEA 5000 einbauen
		4.2.4	CANopen-, PROFIBUS-, EtherCAT- oder PROFINET-Zubehör einbauen 45
5	Ans	chluss .	50
	5.1	Klemme	nübersicht
		5.1.1	Feldbusmodule
	5.2	EMV-ge	rechter Anschluss
	5.3	X10: Vei	sorgung 230 V/400 V
		5.3.1	Netzsicherung
		5.3.2	Fehlerstrom-Schutzeinrichtung

Inhaltsverzeichnis

Projektierhandbuch POSIDRIVE® FDS 5000

	5.3.3	Gehäuseerdung
	5.3.4	Formierung
5.4	X11: Ver	sorgung 24 V
5.5	X1: Freig	gabe und Relais 1
5.6	X20: Mo	tor
5.7	X12: AS	P 5001 – Sicher abgeschaltetes Moment
5.8	X2; X300	0 – X302; X141: Motor-Temperaturfühler, Motor-Haltebremse
5.9	X21: Bre	emswiderstand
5.10	X22: Zw	ischenkreiskopplung
5.11	X100 – X	K103: analoge und binäre Signale
5.12	Encoder	86
	5.12.1	X4
	5.12.2	BE-Encoder und BA-Encodersimulation
5.13	Feldbus	91
	5.13.1	X200: CANopen
	5.13.2	X200: PROFIBUS
	5.13.3	X200, X201: EtherCAT
	5.13.4	X200, X201: PROFINET
5.14	X3: PC,	USS95
5.15	Kabel	96
	5.15.1	Encoderkabel
		5.15.1.1 Encoder HTL
Vers	chaltun	gsbeispiele
Zube	ehör	

WE KEEP THINGS MOVING

6

1 Einleitung

1.1 Über dieses Handbuch

Sie finden in diesem Dokument technische Daten sowie Angaben zum Einbau und Anschluss des Umrichters und seines Zubehörs. Dadurch ermöglicht die vorliegende Technische Dokumentation

- · dem Projektierer die Planung und
- der Elektrofachkraft den technisch einwandfreien Umgang (Einbau und Anschluss).

Originalversion

Die Originalsprache dieser Dokumentation ist deutsch.

Beachten Sie:

Diese Dokumentation ist gültig für Gerätetypen ab Hardware-Stand 200. Gerätetypen mit Hardware-Stand bis 199 sind in den Dokumentationen bis Version V 5.6-N beschrieben.

1.2 Weiterführende Dokumentationen

Handbuch	Inhalte	ID
Inbetriebnahmeanleitung FDS 5000	Neuinstallation, Tausch, Funktionstest	442292
Bedienhandbuch FDS 5000	Einrichten des Umrichters	442280

Aktuelle Dokumentversionen finden Sie unter www.stoeber.de.

In den folgenden Handbüchern finden Sie Angaben zu der Software POSITool:

Handbuch	Inhalte	ID
Bedienhandbuch POSITool	Informationen zu den Grundfunktionen von POSITool	442232
Porgrammierhandbuch	Informationen zum Programmieren mit POSITool	441683

Aktuelle Dokumentversionen finden Sie unter www.stoeber.de.

Beachten Sie, dass Sie die Programmierfunktionalität von POSITool nur nach einer entsprechenden Schulung bei STÖBER nutzen können. Informationen zu den Schulungen finden Sie auf www. stoeber.de

WE KEEP THINGS MOVING

Einleitung

Projektierhandbuch POSIDRIVE® FDS 5000

Die Geräte der 5. STÖBER Umrichtergeneration können optional mit verschiedenen Feldbussystemen verbunden werden. Die Anbindung wird in folgenden Handbüchern beschrieben:

Handbücher	ID
Bedienhandbuch PROFIBUS DP	441685
Bedienhandbuch CANopen	441684
Bedienhandbuch EtherCAT	441895
Bedienhandbuch PROFINET	442339
Bedienhandbuch USS	441706

Aktuelle Dokumentversionen finden Sie unter www.stoeber.de.

Das Zubehör der Umrichter wird in folgenden Handbüchern dokumentiert:

Handbuch	Produktbeschreibung	ID
Betriebsanleitung ASP 5001	Sicherheitstechnische Einbindung der Umrichter in eine Maschine	442180
Betriebsanleitung POSISwitch AX 5000	Sequentielle Umschaltung zwischen bis zu vier Achsen	441669
Betriebsanleitung Controlbox	Bediengerät zur Parametrierung und Bedienung der Umrichter.	441445
Betriebsanleitung Absolute Encoder Support AES	Zur Pufferung der Versorgungsspannung bei Verwendung induktiver Absolutwertencoder EnDat 2.2 digital mit batteriegepufferter Multiturn- Endstufe, z. B. EBI1135, EBI135.	442342

Aktuelle Dokumentversionen finden Sie unter www.stoeber.de.

1.3 Weitere Unterstützung

Falls Sie Fragen zur Technik haben, die Ihnen das vorliegende Dokument nicht beantwortet, wenden Sie sich bitte an:

Telefon: +49 7231 582-3060E-Mail: applications@stoeber.de

Falls Sie Fragen zur Dokumentation haben, wenden Sie sich bitte an:

E-Mail: electronics@stoeber.de

Falls Sie Fragen zu Schulungen haben, wenden Sie sich bitte an:

E-Mail: training@stoeber.de

1.4 Abkürzungen und Formelzeichen

Abkürzungen	
AA	Analoger Ausgang
AC	Alternating Current (dt.: Wechselstrom)
AE	Analoger Eingang
AES	Absolute Encoder Support
BA	Binärer Ausgang
BAT	Batterie
BE	Binärer Eingang
BG	Baugröße
CAN	Controller Area Network
CH	Bremschopper
CNC	Computerized Numerical Control (dt.: computergestützte numerische Steuerung)
CU	Control Unit (dt.: Steuerteil)
DC	Direct Current (dt.: Gleichstrom)
E/A	Eingang/Ausgang (engl.: I/O)
EMV	Elektromagnetische Verträglichkeit
EtherCAT	Ethernet for Control Automation Technology
HTL	High Threshold Logic (dt.: langsame störsichere Logik)
IGB	Integrierter Bus
IP	International Protection (dt.: internationale Schutzart)
MAC	Media Access Control (dt.: Medienzugriffssteuerung)
PE	Protective Earth (dt.: Erdung)
PELV	Protective Extra Low Voltage
PTC	Positive Temperature Coefficient
PU	Power Unit (dt.: Leistungsteil)
PWM	Pulse Width Modulation (dt.: Pulsweitenmodulation)
RB	Brake Resistor (dt.: Bremswiderstand)
RCD	Residual Current protective Device (dt.: Fehlerstrom-Schutzeinrichtung)
SPS	Speicherprogrammierbare Steuerung (engl.: PLC)
SSI	Serial Synchronous Interface (dt.: synchron-serielle Schnittstelle)
STO	Safe Torque Off (dt.: sicher abgeschaltetes Moment)
TTL	Transistor-Transistor-Logik
UL	Underwriters Laboratories
ZK	Zwischenkreis

Einleitung

Projektierhandbuch POSIDRIVE® FDS 5000

Formelzeichen	Einheit	Erklärung
f	Hz	Frequenz
f ₂	Hz	Ausgangsfrequenz
f _{2PU}	Hz	Ausgangsfrequenz des Leistungsteils
f _{max}	Hz	Maximale Frequenz
f _{PWM,PU}	Hz	Interne Pulstaktfrequenz des Leistungsteils
I	Α	Strom
I ₁	Α	Eingangsstrom
I _{1max}	Α	Maximaler Eingangsstrom
I _{1maxCU}	Α	Maximaler Eingangsstrom des Steuerteils
I _{1maxPU}	Α	Maximaler Eingangsstrom des Leistungsteils
I _{1N,PU}	Α	Eingangsnennstrom des Leistungsteils
l ₂	Α	Ausgangsstrom
I _{2max}	Α	Maximaler Ausgangsstrom
I _{2maxPU}	Α	Maximaler Ausgangsstrom des Leistungsteils
I _{2min}	Α	Minimaler Ausgangsstrom
I _{2N,PU}	Α	Ausgangsnennstrom des Leistungsteils
I _N	Α	Nennstrom
n	min ⁻¹	Drehzahl
n _N	min ⁻¹	Nenndrehzahl: Drehzahl, für die das
		Nenndrehmoment M _N angegeben wird
Р	W	Leistung
P _{2maxPU}	W	Maximale Summe der Antriebsleistung
P _{maxRB}	W	Maximale Leistung am externen Bremswiderstand
P _V	W	Verlustleistung
P _{V,CU}	W	Verlustleistung des Steuerteils
R	Ω	Widerstand
R _{2minRB}	Ω	Minimaler Widerstand des externen Bremswiderstands
R _{int}	Ω	Innenwiderstand
θ	°C	Temperatur
$artheta_{ m amb,max}$	°C	Maximale Umgebungstemperatur
T _{th}	s	Thermische Zeitkonstante
t	s	Zeit
t _{min}	s	Minimale Zeit
U	V	Spannung

U ₁	V	Eingangsspannung
U _{1CU}	V	Eingangsspannung des Steuerteils
U _{1PU}	V	Eingangsspannung des Leistungsteils
U _{1max}	V	Maximale Eingangsspannung
U_2	V	Ausgangsspannung
U _{2BAT}	V	Ausgangsspannung der Pufferbatterie
U _{2PU}	V	Ausgangsspannung des Leistungsteils
U _{max}	V	Maximalspannung
U_{maxPU}	V	Maximalspannung des Leistungsteils
U _{offCH}	V	Abschaltschwelle des Bremschoppers
U _{onCH}	V	Einschaltschwelle des Bremschoppers
		Sonstiges
р		Polpaarzahl

1.5 Symbole, Kennzeichen, Marken

Symbole	
	Erdungssymbol nach IEC 60417-5019 (DB:2002-10).

Kenn- und Prüfzeichen		
20 11 S	Bleifrei-Kennzeichen RoHS Bleifrei-Kennzeichen gemäß RoHS-Richtlinie 2011-65-EU.	
C€	CE-Kennzeichen Selbstdeklaration des Herstellers: Das Produkt entspricht den EU-Richtlinien.	
LISTED FOVERED CONTROL	UL-Prüfzeichen Dieses Produkt ist von UL für USA und Kanada gelistet. Repräsentative Muster dieses Produkts wurden von UL bewertet und erfüllen die anwendbaren Normen.	
c FL °us	UL-Prüfzeichen für anerkannte Komponenten Diese Komponente oder dieses Material ist von UL anerkannt. Repräsentative Muster dieses Produkts wurden von UL bewertet und erfüllen die anwendbaren Anforderungen.	

Einleitung

Projektierhandbuch POSIDRIVE® FDS 5000

POSIDRIVE[®], POSIDYN[®] und POSISwitch[®] sind Marken der STÖBER Antriebstechnik GmbH + Co. KG. Die folgenden Namen, die in Verbindung mit dem Gerät, seiner optionalen Ausstattung und seinem Zubehör verwendet werden, sind Marken oder eingetragene Marken anderer Unternehmen:

Marken	
CANopen [®] , CiA [®]	CANopen [®] und CiA [®] sind eingetragene Gemeinschaftsmarken des CAN in Automation e.V., Nürnberg, Deutschland.
EnDat [®]	EnDat [®] und das EnDat [®] -Logo sind eingetragene Marken der Dr. Johannes Heidenhain GmbH, Traunreut, Deutschland.
EtherCAT [®] , Safety over EtherCAT [®] , TwinCAT [®]	EtherCAT [®] , Safety over EtherCAT [®] und TwinCAT [®] sind eingetragene Marken und patentierte Technologien, lizensiert durch die Beckhoff Automation GmbH, Verl, Deutschland.
PROFIBUS [®] , PROFINET [®]	Das PROFIBUS [®] -/PROFINET [®] -Logo ist eine eingetragene Marke der PROFIBUS Nutzerorganisation e. V. Karlsruhe, Deutschland.

Alle anderen, hier nicht aufgeführten Marken, sind Eigentum ihrer jeweiligen Inhaber.

Erzeugnisse, die als Marken eingetragen sind, sind in dieser Dokumentation nicht besonders kenntlich gemacht. Vorliegende Schutzrechte (Patente, Warenzeichen, Gebrauchsmusterschutz) sind zu beachten.

Von den Geräten können Gefahren ausgehen. Halten Sie deshalb

- die in den folgenden Abschnitten und Punkten aufgeführten Sicherheitshinweise und die
- allgemein gültigen technischen Regeln und Vorschriften ein.

Lesen Sie außerdem in jedem Fall die zugehörige Dokumentation. Für Schäden, die aufgrund einer Nichtbeachtung der Anleitung oder der jeweiligen Vorschriften entstehen, übernimmt STÖBER Antriebstechnik GmbH + Co. KG keine Haftung. Die vorliegende Dokumentation stellt eine reine Produktbeschreibung dar. Es handelt sich um keine zugesicherten Eigenschaften im Sinne des Gewährleistungsrechts. Technische Änderungen, die der Verbesserung der Geräte dienen, sind vorbehalten.

2.1 Bestandteil des Produkts

Da diese Dokumentation wichtige Informationen zum sicheren und effizienten Umgang mit dem Produkt enthält, bewahren Sie diese bis zur Produktentsorgung unbedingt in unmittelbarer Nähe des Produkts und für das qualifizierte Personal jederzeit zugänglich auf.

Bei Übergabe oder Verkauf des Produkts an Dritte geben Sie diese Dokumentation ebenfalls weiter.

Bestimmungsgemäße Verwendung 2.2

Bei den Umrichtern handelt es sich im Sinne der DIN EN 50178 (früher VDE 0160) um ein elektrisches Betriebsmittel der Leistungselektronik für die Regelung des Energieflusses in Starkstromanlagen. Sie sind ausschließlich zum Einbau in Schaltschränke mit mindestens der Schutzklasse IP54 sowie zur Speisung von Asynchronmotoren bestimmt. Nicht zur bestimmungsgemäßen Verwendung gehört der Anschluss anderer elektrischer Lasten!

2.3 Risikobeurteilung

Bevor der Hersteller eine Maschine in den Verkehr bringen darf, muss er eine Risikobeurteilung gemäß Maschinenrichtlinie 06/42/EG durchführen. Dadurch werden die mit der Nutzung der Maschine verbundenen Risiken ermittelt. Die Risikobeurteilung ist ein mehrstufiger und iterativer Prozess. Im Rahmen dieser Dokumentation kann in keinem Fall ausreichend Einblick in die Maschinenrichtlinie gegeben werden.

Informieren Sie sich deshalb intensiv über die aktuelle Normen- und Rechtslage. Bei Einbau der Umrichter in Maschinen ist die Inbetriebnahme solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der EG-Richtlinie 06/42/EG entspricht.

Projektierhandbuch POSIDRIVE® FDS 5000

2.4 Einsatzumgebung

Bei den Umrichtern handelt es sich um Produkte der eingeschränkten Vertriebsklasse nach IEC 61800-3. In einer Wohnumwelt kann dieses Produkt hochfrequente Störungen verursachen, in deren Fall der Anwender aufgefordert werden kann, geeignete Maßnahmen zur Reduzierung zu ergreifen.

Die Umrichter sind nicht für den Einsatz in einem öffentlichen Niederspannungsnetz vorgesehen, das Wohngebiete speist. Es sind Hochfrequenzstörungen zu erwarten, wenn die Umrichter in solch einem Netz eingesetzt werden. Die Umrichter sind ausschließlich für den Betrieb an TN-Netzen vorgesehen. Die Umrichter sind nur für den Gebrauch an Versorgungsstromnetzen geeignet, die bei maximal 480 Volt höchstens einen maximal symmetrischen Nennkurzschlussstrom gemäß folgender Tabelle liefern können:

Baugröße	Max. symmetrischer Nennkurzschlussstrom
BG 0 und BG 1	5000 A

Installieren Sie den Umrichter in einem Schaltschrank, in dem die zulässige Umgebungstemperatur nicht überschritten wird.

Folgende Anwendungen sind verboten:

- · der Einsatz in explosionsgefährdeten Bereichen
- der Einsatz in Umgebungen mit schädlichen Stoffen nach EN 60721, z. B. Öle, Säure, Gase, Dämpfe,
 Stäube, Strahlungen
- der Einsatz mit mechanischen Schwingungs- und Stoßbelastungen, die über die Angaben aus den Technischen Daten in den Projektierhandbüchern hinausgehen

Die Realisierung der folgenden Anwendungen ist nur gestattet, falls mit STÖBER Rücksprache gehalten wurde:

• der Einsatz in nicht-stationären Anwendungen

2.5 **Qualifiziertes Personal**

Von den Geräten können Restgefahren ausgehen. Deshalb dürfen alle Projektierungs-, Transport-, Installations- und Inbetriebnahmearbeiten sowie die Bedienung und die Entsorgung nur von geschultem Personal durchgeführt werden, das die möglichen Gefahren kennt.

Das Personal muss für die entsprechende Tätigkeit die erforderliche Qualifikation haben. Die folgende Tabelle listet für die Tätigkeiten Beispiele der beruflichen Qualifikation auf:

Tätigkeit	Mögliche berufliche Qualifikation
Transport und Lagerung	Fachkraft für Lagerlogistik oder vergleichbare Ausbildung
Projektierung	 - DiplIng. in der Fachrichtung Elektrotechnik oder Elektrische Energietechnik - Techniker/in in der Fachrichtung Elektrotechnik
Einbau und Anschluss	Elektroniker/in
Inbetriebnahme (einer Standardapplikation)	Techniker/in in der Fachrichtung ElektrotechnikElektrotechnikermeister/in
Programmierung	DiplIng. in der Fachrichtung Elektrotechnik oder Elektrische Energietechnik
Betrieb	- Techniker/in in der Fachrichtung Elektrotechnik - Elektrotechnikermeister/in
Entsorgung	Elektroniker/in

Dazu müssen die gültigen Vorschriften, die gesetzlichen Vorgaben, die Regelwerke, die vorliegende Technische Dokumentation und besonders die darin enthaltenen Sicherheitshinweise sorgfältig

- gelesen,
- verstanden und
- beachtet werden.

2.6 **Transport und Lagerung**

Untersuchen Sie die Lieferung sofort nach Erhalt auf etwaige Transportschäden. Teilen Sie diese sofort dem Transportunternehmen mit. Bei Beschädigungen dürfen Sie das Produkt nicht in Betrieb nehmen. Wenn Sie das Gerät nicht sofort einbauen, lagern Sie es in einem trockenen und staubfreien Raum. Beachten Sie die Dokumentation zur Inbetriebnahme eines Umrichters nach einer Lagerzeit von einem Jahr oder länger.

Projektierhandbuch POSIDRIVE® FDS 5000

2.7 Einbau und Anschluss

Einbau- und Anschlussarbeiten sind ausschließlich im spannungsfreien Zustand erlaubt!

Für den Einbau von Zubehör ist es gemäß den Zubehör-Einbauanleitungen gestattet, das Gehäuse am oberen Steckplatz zu öffnen. Das Öffnen des Gehäuses an anderer Stelle oder zu anderen Zwecken ist nicht gestattet.

Verwenden Sie nur Kupferleitungen. Die zu verwendenden Leitungsquerschnitte ergeben sich aus der DIN VDE 0298-4 oder der DIN EN 60204-1 Anhang D und Anhang G.

Die zulässige Schutzklasse ist Schutzerdung. Der Betrieb ist nur mit vorschriftsmäßigem Anschluss des Schutzleiters zulässig. Beachten Sie bei der Installation und der Inbetriebnahme von Motor und Bremse die jeweiligen Anleitungen.

Alle Schutzleiteranschlüsse sind mit "PE" oder dem internationalen Erdungssymbol (IEC 60417, Symbol 5019 (1994)) gekennzeichnet.

Der Motor muss eine integrale Temperaturüberwachung mit Basisisolierung entsprechend EN 61800-5-1 besitzen, oder es muss ein externer Motorüberlastschutz verwendet werden.

Schützen Sie den Umrichter bei der Aufstellung oder sonstigen Arbeiten im Schaltschrank gegen herunterfallende Teile (Drahtreste, Litzen, Metallteile, usw.). Teile mit leitenden Eigenschaften können innerhalb des Umrichters zu einem Kurzschluss oder Geräteausfall führen.

Beachten Sie für den UL-konformen Einsatz zusätzlich Kapitel 2.11.

2.8 Inbetriebnahme, Betrieb und Service

Entfernen Sie zusätzliche Abdeckungen vor der Inbetriebnahme, damit es nicht zur Überhitzung des Gerätes kommen kann. Beachten Sie beim Einbau die in den Projektierhandbüchern angegebenen Freiräume, um eine Überhitzung des Umrichters und seines Zubehörs zu vermeiden.

Das Gehäuse des Umrichters muss geschlossen sein, bevor Sie die Versorgungsspannung einschalten. Bei eingeschalteter Versorgungsspannung können an den Anschlussklemmen und den daran angeschlossenen Kabeln und Motorklemmen gefährliche Spannungen auftreten. Beachten Sie, dass das Gerät nicht unbedingt spannungslos ist, wenn alle Anzeigen erloschen sind.

Es ist verboten, bei angelegter Netzspannung

- das Gehäuse zu öffnen,
- Anschlussklemmen zu stecken oder abzuziehen und
- Zubehör ein- oder auszubauen bzw. an- oder abzubauen.

Wenden Sie vor allen Arbeiten an der Maschine die 5 Sicherheitsregeln in der genannten Reihenfolge an:

- 1. Freischalten. Beachten Sie auch das Freischalten der Hilfsstromkreise.
- 2. Gegen Wiedereinschalten sichern.
- 3. Spannungsfreiheit feststellen.
- 4. Erden und kurzschließen.
- 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.

GERMANY

Information

Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

Anschließend können Sie die Arbeiten am Umrichter durchführen. Reparaturen dürfen nur von STÖBER durchgeführt werden.

Schicken Sie defekte Geräte mit einer Fehlerbeschreibung an: STÖBER Antriebstechnik GmbH + Co. KG Abteilung VS-EL Kieselbronner Str.12 75177 Pforzheim

Projektierhandbuch POSIDRIVE® FDS 5000

2.9 Entsorgung

Beachten Sie bitte die aktuellen nationalen und regionalen Bestimmungen! Entsorgen Sie die einzelnen Teile getrennt je nach Beschaffenheit und aktuell geltenden Vorschriften, z. B. als

- · Elektronikschrott (Leiterplatten)
- Kunststoff
- Blech
- Kupfer
- Aluminium
- Batterie

2.10 Restgefahren

Bei bestimmten Einstellungen der Umrichter kann der angeschlossene Motor beschädigt werden:

- längerer Betrieb gegen eine eingefallene Motor-Haltebremse
- längerer Betrieb eigenbelüfteter Motoren bei kleinen Drehzahlen

Antriebe können gefährliche Überdrehzahlen erreichen (z. B. Einstellung hoher Ausgangsfrequenzen bei dafür ungeeigneten Motoren und Motoreinstellungen). Sichern Sie den Antrieb entsprechend ab.

2.11 UL-konformer Einsatz

Zusätzliche Informationen für die Verwendung unter UL-Bedingungen (UL – Underwriters Laboratories).

Umgebungstemperatur und Verschmutzungsgrad

Die maximale Umgebungstemperatur für einen UL-konformen Betrieb beträgt 45 °C.

Beachten Sie für den Einsatz in einer Umgebung mit Verschmutzungsgrad die Angabe in den allgemeinen Daten, siehe Kapitel 3.3.1.

Netzform

Alle Gerätetypen, die mit 480 V versorgt werden, sind ausschließlich für den Betrieb an Wye-Netzen mit 480/277 V vorgesehen.

Leistungsversorgung und Motor-Überlastschutz

Beachten Sie hierzu die Angaben in den elektrischen Daten des Umrichters, siehe Kapitel 3.4.

Netzsicherung

Beachten Sie für die UL-konforme Netzsicherung die Angaben in Kapitel 5.3.1.

Motorschutz

Alle Modelle der 5. STÖBER Umrichtergeneration verfügen über ein zertifiziertes i²t-Modell, einem Rechenmodell für die thermische Überwachung des Motors. Dieses erfüllt die Anforderungen eines Halbleiter-Motorüberlastschutzes gemäß Änderung UL 508C vom Mai 2013. Um es zu aktivieren und die

Projektierhandbuch POSIDRIVE® FDS 5000

Schutzfunktion einzurichten, nehmen Sie – abweichend von den Defaultwerten – folgende Parametereinstellungen vor: U10 = 2:Warnung und U11 = 1,00 s. Dieses Modell kann alternativ oder ergänzend zu einem temperaturüberwachten Motorschutz, wie in Kapitel 5.8 beschrieben, verwendet werden.

Information

STÖBER Antriebstechnik GmbH + Co. KG empfiehlt den Einsatz von PTC-Thermistoren als thermischen Motorschutz.

Motor-Temperaturfühler

Alle Modelle der 5. STÖBER Umrichtergeneration ab HW 200 verfügen über Anschlüsse für PTC-Thermistoren (NAT 145 °C), KTY- (KT84-130) oder Pt-Temperaturfühler (Pt1000). Beachten Sie für den ordnungsgemäßen Anschluss die Klemmenbeschreibung X2, siehe Kapitel 5.8.

Bremswiderstand

Wenn beabsichtigt ist, die Umrichter mit einem extern montierten Bremswiderstand zu versehen, ist separat ein Übertemperaturschutz zur Verfügung zu stellen.

Versorgung 24 V

Niederspannungsschaltkreise müssen von einer vom Netz isolierten Quelle versorgt werden, deren maximale Ausgangsspannung 28,8 V nicht übersteigt.

Beachten Sie hierzu die Klemmenbeschreibung X11, siehe Kapitel 5.4.

Leitungen

Verwenden Sie nur Kupferleitungen für 60/75 °C Umgebungstemperatur.

Sicherungen

Verwenden Sie eine Sicherung 1 A (träge) vor Relais 1. Die Sicherung muss nach UL 248 zugelassen sein. Beachten Sie hierzu das Anschlussbeispiel der Klemmenbeschreibung X1, siehe Kapitel 5.5.

Abzweigschutz

Ein integrierter Halbleiter-Kurzschlussschutz stellt keinen Abzweigschutz zur Verfügung. Wenn Sie den Ausgang des Umrichters verzweigen möchten, muss ein Abzweigschutz in Übereinstimmung mit den Anweisungen von STÖBER, dem National Electrical Code und allen zusätzlich geltenden lokalen Vorschriften oder gleichwertigen Bestimmungen sichergestellt werden.

UL-Prüfung

Während der UL-Abnahme bei STÖBER Antriebstechnik GmbH + Co. KG wurden ausschließlich die Risiken für einen elektrischen Stromschlag und die Brandgefahr untersucht. Funktionale Sicherheitsaspekte wurden dabei nicht bewertet. Diese werden für STÖBER beispielsweise durch die Zertifizierungsstelle TÜV SÜD bewertet.

Projektierhandbuch POSIDRIVE® FDS 5000

2.12 Darstellung von Sicherheitshinweisen

ACHTUNG

Achtung

bedeutet, dass ein Sachschaden eintreten kann,

falls die genannten Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT!

Vorsicht

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann,

▶ falls die genannten Vorsichtsmaßnahmen nicht getroffen werden.

Λ

WARNUNG!

Warnung

bedeutet, dass erhebliche Lebensgefahr eintreten kann,

▶ falls die genannten Vorsichtsmaßnahmen nicht getroffen werden.

Λ

GEFAHR!

Gefahr

bedeutet, dass erhebliche Lebensgefahr eintreten wird,

▶ falls die genannten Vorsichtsmaßnahmen nicht getroffen werden.

Information

bedeutet eine wichtige Information über das Produkt oder die Hervorhebung eines Dokumentationsteils, auf den besonders aufmerksam gemacht werden soll.

3.1 Typenbezeichnung

Beispielcode

FDS 5 075 A /H	
----------------	--

Erklärung

Code	Bezeichnung	Ausführung
FDS	Baureihe	
5	Generation	5. Generation
075	Leistung	075 = 7,5 kW
— А	Hardware-Varianten	Ohne Kennzeichnung: bis HW 199 A: ab HW 200
/H	Ausprägung	 Hilfsspannung für Steuerelektronik: Versorgung der Steuerelektronik über Zwischenkreis; keine zusätzliche 24 V-Versorgung
/L		erforderlich. • Versorgung der Steuerelektronik über 24 V an der Klemme X11.

3.2 Baugrößen

Die Baureihe FDS 5000 umfasst folgende Typen und Baugrößen:

Тур	Baugröße
FDS 5004A	BG 0
FDS 5007A	BG 0
FDS 5008A	BG 0
FDS 5015A	BG 0
FDS 5022A	BG 1
FDS 5040A	BG 1
FDS 5055A	BG 1
FDS 5075A	BG 1

3.3 Allgemeine Daten der Umrichter

3.3.1 Transport-, Lagerungs- und Betriebsumgebung

ACHTUNG

Sachschaden!

Die Zwischenkreiskondensatoren von Geräten der Baugröße BG 0, BG 1 und BG 2 können durch lange Lagerzeiten ihre Spannungsfestigkeit verlieren. Durch eine verminderte Spannungsfestigkeit der Zwischenkreiskondensatoren kann beim Einschalten ein erheblicher Sachschaden entstehen.

▶ Formieren Sie gelagerte Geräte jährlich oder vor der Inbetriebnahme.

Umgebungstemperatur im Betrieb	0 °C bis 45 °C bei Nenndaten;
	bis 55 °C mit Leistungsrücknahme 2,5 %/K
	G
Lager-/	-20 °C bis +70 °C;
Transporttemperatur	maximale Änderung: 20 K/h
Luftfeuchtigkeit	Relative Luftfeuchtigkeit 85 %, nicht betauend
Aufstellhöhe	Bis 1000 m über NN ohne Einschränkung;
	1000 bis 2000 m über NN mit Leistungsrücknahme 1,5 %/100 m
Verschmutzungsgrad	Verschmutzungsgrad 2 nach EN 50178
Belüftung	Eingebauter Lüfter
Vibration (Betrieb) nach	5 Hz ≤ f ≤ 9 Hz: 0,35 mm
DIN EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz: 1 m/s ²
Vibration (Transport) nach	5 Hz ≤ f ≤ 9 Hz: 3,5 mm
DIN EN 60068-2-6	9 Hz \leq f \leq 200 Hz: 10 m/s ²
DIN EN 00000-2-0	
	200 Hz ≤ f ≤ 500 Hz: 15 m/s ²

3.3.2 Gerätemerkmale

Schutzart	IP20
Funkentstörung	Integrierter Netzfilter nach EN 61800-3, Störaussendung Klasse C3
Überspannungskategorie	III nach EN 61800-5-1

3.3.3 Gewicht

Gerät	Gewicht		
	Ohne Verpackung [kg]	Mit Verpackung [kg]	
FDS 5007A			
FDS 5004A	2,1	2,9	
FDS 5008A	۷,۱		
FDS 5015A			
FDS 5022A			
FDS 5040A	3,7	4,8	
FDS 5055A	3,1		
FDS 5075A			

Falls Sie einen Umrichter mit Zubehörteilen bestellen, erhöht sich das Gewicht um folgende Beträge:

• Zubehörteile für obere Option (Feldbus): 0,1 kg

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

3.4 Elektrische Daten

Information

Eine Erklärung der wichtigsten Formelzeichen finden Sie in Kapitel 1.4 Abkürzungen und Formelzeichen.

3.4.1 Baugröße 0 (BG 0): FDS 5007A bis FDS 5015A

Тур	FDS 5007A	FDS 5004A	FDS 5008A	FDS 5015A
IdNr. Ausprägung /H	55421	55420	55422	55423
ldNr. Ausprägung /L	55413	55412	55414	55415
Empfohlene Motorleistung	0,75 kW	0,37 kW	0,75 kW	1,5 kW
U _{1PU}	1 × 230 V +20 % / -40 % 50/60 Hz	3 × 400 V, +32 % / -50 %, 50 Hz 3 × 480 V, +10 % / -58 %, 60 Hz		
I _{1N,PU}	1 × 5,9 A	$3 \times 1,4 A$	$3 \times 2,2 A$	3 × 4 A
f _{2PU}	0 – 700 Hz			
U _{2PU}	0 bis 230 V		0 – 400 V	

Betrieb mit Asynchronmotor

I _{2N,PU}	3 × 4 A	3 × 1,3 A	3 × 2,3 A	3 × 4,5 A
I _{2maxPU}	180 % für 5 s; 150 % für 30 s			
f _{PWM,PU}	4 kHz ^{a)}			

a) Taktfrequenz einstellbar von 4 bis 16 kHz, siehe Kapitel 3.4.5 Derating durch Erhöhen der Taktfrequenz.

U _{maxPU}	440 V	830 V
U _{onCH}	400 V bis 420 V	780 V – 800 V
U _{offCH}	360 V bis 380 V	740 V – 760 V
R _{2minRB}	100 Ω	100 Ω
P _{maxRB}	1,8 kW	6,4 kW

3.4.2 Baugröße 1 (BG 1): FDS 5022A bis FDS 5075A

Тур	FDS 5022A	FDS 5040A	FDS 5055A	FDS 5075A
ldNr. Ausprägung /H	55424	55425	55426	55427
ldNr. Ausprägung /L	55416	55417	55418	55419
Empfohlene Motorleistung	2,2 kW	4,0 kW	5,5 kW	7,5 kW
U _{1PU}		•	% / -50 %, 50 Hz % / -58 %, 60 Hz	
I _{1N,PU}	3 × 5,3 A	3 × 9,3 A	3 × 12,3 A	3 × 15,8
f _{2PU}		0 – 7	00 Hz	
U _{2PU}		0 – 4	100 V	

Betrieb mit Asynchronmotor

I _{2N,PU}	$3 \times 5,5 A$	3 × 10 A	3 × 12 A	3 × 16 A	
I _{2maxPU}	180 % für 5 s; 150 % für 30 s				
f _{PWM,PU}		4 kl	Hz ^{a)}		

a) Taktfrequenz einstellbar von 4 bis 16 kHz, siehe Kapitel 3.4.5 Derating durch Erhöhen der Taktfrequenz.

U _{maxPU}		83	0 V		
U _{onCH}		780 V -	– 800 V		
U _{offCH}	740 V – 760 V				
R _{2minRB}	100 Ω 47 Ω 47 Ω				
P _{maxRB}	6,4 kW	13,6 kW	13,6 kW		

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

Verlustleistungsdaten der Umrichter nach EN 50598 3.4.3

KEEP THINGS MOVING

2	Nennstrom I _{2N,PU}	Schein- leistung	Absolute Verluste P _{V.CU} ^{a)}				Betried	Betriebspunkte",				IE- Klasse ^{c)}	Vergieich
				(0/25)	(0/20)	(0/100)	(50/25)	(50/25) (50/50) (50/100) (90/50) (90/100)	(50/100)	(90/20)	(90/100)		
							Relativ	Relative Verluste	ø				
	Ξ	[k/A]	M					[%]					
FDS 5004A	1,3	6,0	9	5,92	5,94	6,20	5,97	6,02	6,36	6,13	6,62	IE2	
FDS 5007A	4	6,0	9	5,01	5,07	5,68	5,20	5,37	6,30	5,88	7,43	IE2	
FDS 5008A	2,3	1,6	9	2,98	3,13	3,49	3,02	3,22	3,71	3,36	4,09	IE2	
FDS 5015A	4,5	3,1	6 ×	1,71	1,86	2,24	1,75	1,97	2,51	2,16	3,04	IE2	
FDS 5022A	5,5	3,8	6 >	1,64	1,79	2,16	1,69	1,89	2,38	2,02	2,74	IE2	
FDS 5040A	10	6,9	6 >	1,38	1,54	1,93	1,43	1,64	2,17	1,80	2,57	IE2	
FDS 5055A	12	8,3	6 >	1,10	1,26	1,76	1,15	1,36	2,04	1,51	2,50	IE2	
FDS 5075A	16	11,1	6 >	0,95	1,12	1,67	1,00	1,23	1,98	1,41	2,52	IE2	
						1	Absolute	Absolute Verluste P _V	₽>				
	Ξ	[k/A]	M					[M]					[%]
FDS 5004A	1,3	6,0	9	53,3	53,5	55,8	53,7	54,5	57,2	55,2	59,6	IE2	46,2
FDS 5007A	4	6,0	9	45,1	45,6	51,1	46,8	48,3	26,7	52,9	6,99	IE2	51,8
FDS 5008A	2,3	1,6	9	47,7	50,1	55,8	48,3	51,5	59,3	53,8	65,4	IE2	40,2
FDS 5015A	4,5	3,1	6 ×	52,9	9,75	69,3	54,4	61,0	6,77	67,1	94,1	IE2	39,6
FDS 5022A	5,5	3,8	6 ٧	62,4	0,89	82,0	64,1	71,7	90'6	6'92	104,1	IE2	34,9
FDS 5040A	10	6,9	6 >	95,3	106,1	133,3	98'6	113,2	149,9	123,9	177,0	IE2	37,1
FDS 5055A	12	8,3	6 >	91,3	104,6	145,9	95,1	113,1	169,2	125,7	207,7	IE2	35,7
FDS 5075A	16	11.1	6: V	104 9	124.0	184 G	1103	136 G	219.8	156.0	279.8	<u>Ε</u>	35 B

a) Absolute Verluste bei abgeschalteter Endstufe
 b) Betriebspunkte bei relativer Motorstatorfrequenz in % und relativem Drehmomentenstrom in %

c) IE-Klasse nach EN 50598 d) Vergleich der Verluste zum Referenz-Umrichter bezogen auf IE2 im Nennpunkt (90, 100)

Projektierhandbuch POSIDRIVE® FDS 5000

STÖBER

Rahmenbedingungen

Die Verlustleistungsberechnung basiert auf einer dreiphasigen Netzspannung mit 400 V_{AC} / 50 Hz. Die Verlustdaten gelten für Umrichter ohne Zubehör.

Die berechneten Daten enthalten einen Aufschlag von 10 % gemäß EN 50598.

Die absoluten Verluste bei abgeschalteter Endstufe beziehen sich auf die 24 V-Versorgung der Steuerelektronik. Die Verlustleistungsangaben beziehen sich auf eine Taktfrequenz von 4 kHz.

Projektierhandbuch POSIDRIVE® FDS 5000

3.4.4 Verlustleistungsdaten des Zubehörs

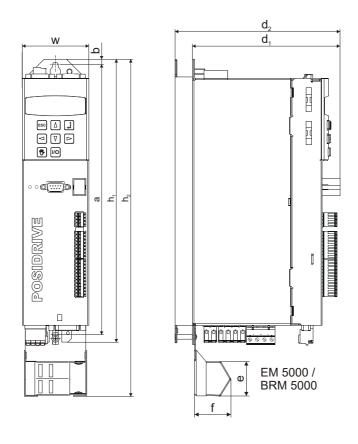
Тур	Absolute Verluste P _V [W]
Sicherheitsmodul ASP 5001	1
Klemmenmodul LEA 5000	1
Feldbusmodul CAN 5000	1
Feldbusmodul DP 5000	< 2
Feldbusmodul ECS 5000	< 2
Feldbusmodul PN 5000	< 4
Bremsmodul BRM 5000	< 1

Information

Beachten Sie für die Auslegung zusätzlich die absolute Verlustleistung des Encoders (üblicherweise < 3 W) sowie der Bremse.

3.4.5 Derating durch Erhöhen der Taktfrequenz

In Abhängigkeit von der Taktfrequenz $f_{PWM,PU}$ (Parameter *B24*) ergeben sich folgende Werte der Ausgangsnennströme $I_{2N,PU}$.


Ausgangsnennstrom I_{2N.PU}

Taktfrequenz	4 kHz	8 kHz	16 kHz
FDS 5004A	1,3 A	1,0 A	0,7 A
FDS 5007A	4,0 A	3,0 A	2,0 A
FDS 5008A	2,3 A	1,7 A	1,2 A
FDS 5015A	4,5 A	3,4 A	2,2 A
FDS 5022A	5,5 A	4,0 A	2,6 A
FDS 5040A	10,0 A	6,0 A	3,3 A
FDS 5055A	12,0 A	7,5 A	4,8 A
FDS 5075A	16,0 A	10,0 A	5,7 A

3.5 Abmessungen

3.5.1 BG 0 bis BG 1: FDS 5007A bis FDS 5075A

Maße [mm]	Maße [mm]				
Umrichter	Höhe	h ₁	30	00	
		h ₂ a)	36	60	
	Breite	W	7	0	
	Tiefe	d ₁	157	242	
		d ₂ b)	175	260	
EMV-Schirmblech	Höhe	е	37	' ,5	
	Tiefe	f	40		
Befestigungslöcher	Vertikaler Abstand	а	283		
	Vertikaler Abstand zu Oberkante	b	(3	

a) h₂ = Höhe inkl. EMV-Schirmblech EM 5000 oder Bremsmodul BRM 5000

b) d_2 = Tiefe inkl. Bremswiderstand RB 5000

Projektierhandbuch POSIDRIVE® FDS 5000

Bremswiderstände FDS 5xxxA 3.6

3.6.1 FZMU, FZZMU

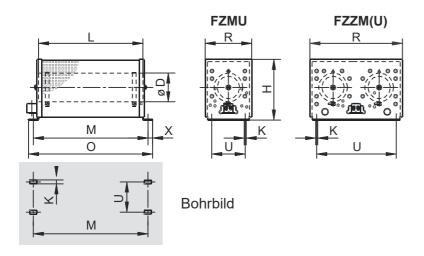
Zuordnung Bremswiderstand – Umrichter

Тур	FZMU 400×65	FZZMU 400×65
ldNr.	49010	53895
FDS 5007A	Χ	_
FDS 5004A	X	_
FDS 5008A	X	_
FDS 5015A	Χ	_
FDS 5022A	Χ	_
FDS 5040A	_	X
FDS 5055A	_	X
FDS 5075A	_	X

Die internen Anschlüsse sind mit wärmebeständiger, silikonisolierter Litze auf Klemmen verdrahtet. Beachten Sie auch für den Anschluss eine wärmebeständige und ausreichend spannungsfeste Ausführung!

Leiterquerschnitt

Anschlussart	Leiterquerschnitt [mm²]
Starr	0,5 – 4,0
Flexibel mit Aderendhülse	0,5 – 2,5


Eigenschaften

Тур	FZMU 400×65	FZZMU 400×65
ldNr.	49010	53895
Widerstand $[\Omega]$	100	47
Leistung [W]	600	1200
Therm. Zeitkonst. Tth [s]	40	40
Impulsleistung für < 1 s [kW]	18	36
U _{max} [V]	848	848
Gewicht [kg]	Ca. 2,2	Ca. 4,2
Schutzart	IP20	IP20
Prüfzeichen	c FL °us	c FL °us

Abmessungen [mm]

Тур	FZMU 400×65	FZZMU 400×65
ldNr.	49010	53895
LxD	400 × 65	400 × 65
Н	120	120
K	6,5 × 12	6,5 × 12
М	430	426
0	485	450
R	92	185
U	64	150
X	10	10

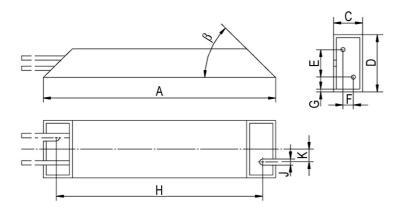
3.6.2 GVADU, GBADU

Zuordnung Bremswiderstand – Umrichter

Тур	GVADU 210×20	GBADU 265×30	GBADU 335×30	GBADU 405×30
ldNr.	55441	55442	55443	55499
FDS 5007A	X	X	_	X
FDS 5004A	X	X	_	X
FDS 5008A	Х	Х	-	X
FDS 5015A	X	X	_	X
FDS 5022A	X	X	_	X
FDS 5040A	_	_	Χ	
FDS 5055A	_	_	Χ	
FDS 5075A	_	_	Χ	_

Eigenschaften

Тур	GVADU 210×20	GBADU 265×30	GBADU 335×30	GBADU 405×30
ldNr.	55441	55442	55443	55499
Widerstand [Ω]	100	100	47	100
Leistung [W]	150	300	400	500
Therm. Zeitkonst. τ_{th} [s]	60		60	
Impulsleistung für < 1 s [kW]	3,3	6,6	8,8	11
U _{max} [V]	848		848	
Kabelausführung	Radox		FEP	
Kabellänge [mm]	50		50	
Kabelquerschnitt [AWG]	18/19 (0,82 mm²)		14/19 (1,9 mm²)	
Gewicht [g]	300	950	1200	1450
Schutzart	IP54		IP54	
Prüfzeichen	c FU °us		c FU °us	


30 ID 442268.10

WE KEEP THINGS MOVING

Abmessungen [mm]

Тур	GVADU 210×20	GBADU 265×30	GBADU 335×30	GBADU 405×30
ldNr.	55441	55442	55443	55499
Α	210	265	335	405
Н	192	246	316	386
С	20	30	30	30
D	40	60	60	60
E	18,2	28,8	28,8	28,8
F	6,2	10,8	10,8	10,8
G	2	3	3	3
K	2,5	4	4	4
J	4,3	5,3	5,3	5,3
β	65°	73°	73°	73°

Projektierhandbuch POSIDRIVE® FDS 5000

3.6.3 Unterbaubremswiderstand RB 5000

Zuordnung Bremswiderstand – Umrichter

Typ ldNr.	RB 5047 44966	RB 5100 44965	RB 5200 44964
FDS 5007A	44000	X	X
FDS 5007A	_	۸	۸
FDS 5004A		Χ	Χ
FDS 5008A		X	X
FDS 5015A		X	X
FDS 5022A		X	
FDS 5040A	X	X	
FDS 5055A	X	X	
FDS 5075A	Х	_	

Beachten Sie den Anbau am Umrichter (Kapitel 4.2.1 Unterbaubremswiderstand und Umrichter einbauen)!

Eigenschaften

Тур	RB 5047	RB 5100	RB 5200
ldNr.	44966	44965	44964
Widerstand $[\Omega]$	47	100	200
Leistung [W]	60	60	40
Therm. Zeitkonst. τ _{th} [s]	8		6
Impulsleistung für < 1 s [kW]	1,5	1,0	0,5
U _{max} [V]	800		
Gewicht [g]	Ca. 460 Ca. 440		
Kabelausführung	Radox		
Kabellänge [mm]	250		
Kabelquerschnitt [AWG]	18/19 (0,82 mm²)		
Maximales Drehmoment für M5-Gewindebolzen [Nm]	5		
Schutzart	IP 40		
Prüfzeichen	c AL us		

Abmessungen [mm]

Тур	RB 5047	RB 5100	RB 5200
ldNr.	44966	44965	44964
Höhe	300		
Breite	62		
Tiefe	18		
Bohrbild entspricht Baugröße:	BG 1	BG 0 und 1	BG 0

Ausgangsdrossel 3.7

WARNUNG!

Verbrennungsgefahr! Brandgefahr! Sachschäden!

Drosseln können sich unter zulässigen Betriebsbedingungen auf über 100 °C erhitzen.

- ▶ Treffen Sie Schutzmaßnahmen gegen unbeabsichtigtes und beabsichtigtes Berühren der Drossel.
- Stellen Sie sicher, dass sich keine entzündlichen Materialien in der Nähe der Drossel befinden.
- Bauen Sie Drosseln nicht unter oder nahe beim Umrichter ein.

WARNUNG!

Brandgefahr!

Werden Drosseln außerhalb der Nenndaten (Kabellänge, Strom, Frequenz usw.) eingesetzt, können diese überhitzen.

Halten Sie beim Betrieb der Drosseln immer die maximalen Nenndaten ein.

ACHTUNG

Gefahr des Maschinenstillstands!

Die Motor-Temperaturfühler-Auswertung wird durch Kabelkapazitäten gestört.

▶ Wenn Sie bei einer Kabellänge über 50 m keine Kabel von STÖBER einsetzen, müssen Sie die Adern für den Motor-Temperaturfühler und die Bremse separat ausführen (maximale Länge: 100 m).

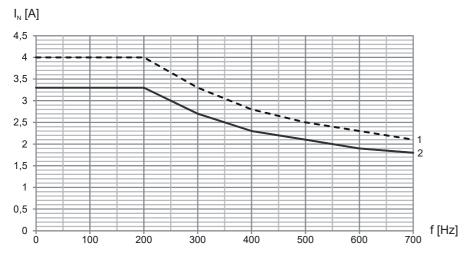
Projektierhandbuch POSIDRIVE® FDS 5000

Information

Die folgenden Technischen Daten gelten für eine Drehfeldfrequenz von 200 Hz. Diese Drehfeldfrequenz erreichen Sie zum Beispiel mit einem Motor mit der Polpaarzahl 4 und der Nenndrehzahl 3000 min⁻¹.

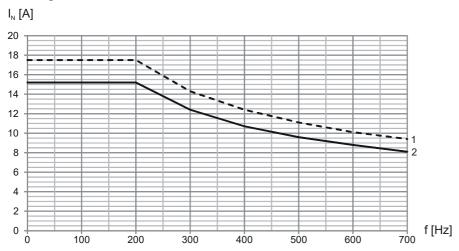
Beachten Sie für höhere Drehfeldfrequenzen in jedem Fall das angegebene Derating. Beachten Sie außerdem die Abhängigkeit von der Taktfrequenz.

Тур	Ausgangsdrossel TEP3720-0ES41	Ausgangsdrossel 4EP3820-0CS41	
ldNr.	53188	53189	
Spannungsbereich	3 x 0 bis 480 V		
Frequenzbereich	0 bis 200 Hz		
Bemessungsstrom der Ausgangsdrossel bei 4 kHz	4 A	17,5 A	
Max. zulässige Motor-Kabellänge mit Ausgangsdrossel	100 m		
Max. Umgebungstemperatur $\vartheta_{ m amb,max}$	40° C		
Bauart	Offen		
Schutzart	IP 00		
Wicklungsverluste	11 W	29 W	
Eisenverluste	25 W	16 W	
Anschlüsse	Schraubklemmen		
Max. Leiterquerschnitt	10 mm ²		
Zulassungen	c Al °us		


Projektierung

Wählen Sie die Ausgangsdrosseln gemäß der Bemessungsströme von Motor und Ausgangsdrosseln aus. Beachten Sie insbesondere das Derating der Ausgangsdrossel für höhere Drehfeldfrequenzen als 200 Hz. Sie berechnen die Drehfeldfrequenz für Ihren Antrieb mit folgender Formel:

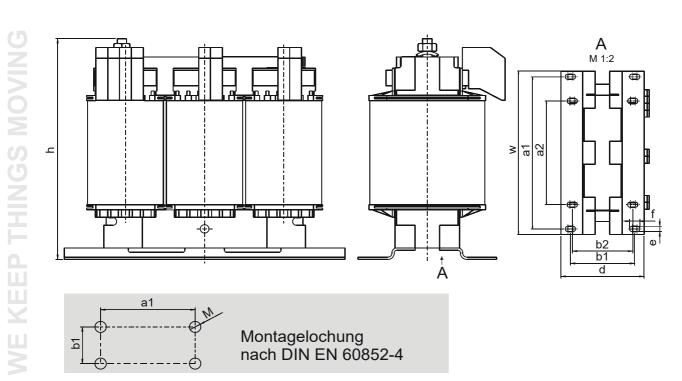
$$f = n_N \cdot \frac{p}{60}$$


- f Drehfeldfrequenz in Hz
- n Drehzahl in min⁻¹
- p Polpaarzahl
- N Nennwert

Derating TEP3720-0ES41

- 1 Taktfrequenz 4 kHz
- 2 Taktfrequenz 8 kHz

Derating TEP3820-0CS41



- 1 Taktfrequenz 4 kHz
- 2 Taktfrequenz 8 kHz

Projektierhandbuch POSIDRIVE® FDS 5000

Maße	TEP3720-0ES41	4EP3820-0CS41
Höhe h [mm]	Max. 153	Max. 153
Breite w [mm]	178	178
Tiefe d [mm]	73	88
Vertikaler Abstand – Befestigungslöcher a1 [mm]	166	166
Vertikaler Abstand – Befestigungslöcher a2 [mm]	113	113
Horizontaler Abstand – Befestigungslöcher b1 [mm]	53	68
Horizontaler Abstand – Befestigungslöcher b2 [mm]	49	64
Bohrlöcher – Tiefe e [mm]	5,8	5,8
Bohrlöcher – Breite f [mm]	11	11
Verschraubung – M	M5	M5
Gewicht [kg]	2,9	5,9

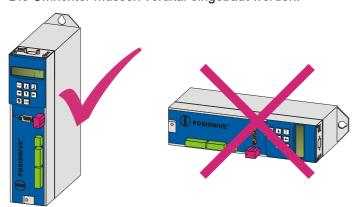
4 Einbau

In diesem Kapitel sind die Informationen zum Einbau aufgeführt. Dazu gehören

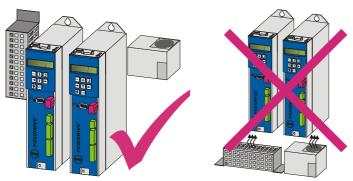
- · der Einbau des Umrichter in den Schaltschrank und
- der Einbau von Zubehör am oder in den Umrichter.

MARNUNG!

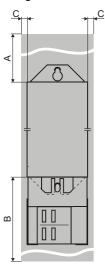
Gefahr von Personen- und Sachschäden durch elektrischen Schlag!


▶ Schalten Sie vor sämtlichen Arbeiten am Umrichter alle Versorgungsspannungen ab! Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

4.1 Umrichter in den Schaltschrank einbauen


ACHTUNG

Gefahr von Sachschäden durch fehlerhaften Einbau der Geräte!


- ▶ Befolgen Sie unbedingt die folgenden Einbau-Anweisungen, um Schäden an den Geräten zu vermeiden.
- Die Umrichter müssen in einen Schaltschrank mit mindestens der Schutzklasse IP54 eingebaut werden.
- Der Einbauort muss frei von Staub, korrodierenden Dämpfen und jeglichen Flüssigkeiten sein (gemäß Verschmutzungsgrad 2 nach EN 60204/EN 50178).
- Der Einbauort muss frei sein von atmosphärischer Feuchtigkeit.
- Vermeiden Sie Kondensation z.B. durch Antikondensat-Heizelemente.
- Verwenden Sie aus EMV-Gründen Montageplatten mit leitfähiger Oberfläche (z. B. unlackiert).
- Befestigen Sie die Umrichter mit M5-Schrauben an der Montageplatte.
- · Die Umrichter müssen vertikal eingebaut werden:

Vermeiden Sie die Installation oberhalb oder in unmittelbarer N\u00e4he von w\u00e4rmeerzeugenden Ger\u00e4ten, z.
 B. Ausgangsdrosseln oder Bremswiderst\u00e4nden:

• Sorgen Sie für ausreichende Luftzirkulation im Schaltschrank, indem Sie die Mindestfreiräume einhalten.

WE KEEP THINGS MOVING

Min. Freiraum	Α	В	С
[Maße in mm]	nach oben	nach unten	zur Seite
BG 0 und BG 1	100	100	5
mit EMV-Schirmblech oder Bremsmodul	100	120	5

4.2 Zubehör

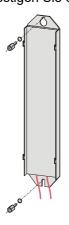
4.2.1 Unterbaubremswiderstand und Umrichter einbauen

↑ WARNUNG!

Gefahr von Personen- und Sachschäden durch elektrischen Schlag!

▶ Schalten Sie vor sämtlichen Arbeiten am Umrichter alle Versorgungsspannungen ab! Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

Voraussetzungen:

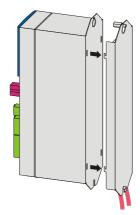

 Sie haben auf der Montageplatte im Schaltschrank am Einbauplatz – unter Berücksichtigung der unterschiedlichen Geräteabmessungen – Gewindebohrungen für M5-Gewindebolzen angebracht.

Sie benötigen:

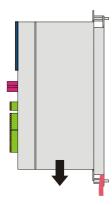
- Die dem Unterbaubremswiderstand beiliegenden M5-Gewindebolzen.
- Die dem Unterbaubremswiderstand beiliegenden Schrauben und Unterlegscheiben.
- · Einen PH2 Kreuzschlitzschraubendreher.
- Einen Sechskant-Steckschlüssel 8 mm.

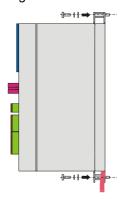
Unterbaubremswiderstand einbauen

1. Befestigen Sie den Unterbaubremswiderstand mit den Gewindebolzen an der Montageplatte:



Einbau


Projektierhandbuch POSIDRIVE® FDS 5000


2. Setzen Sie das Gerät auf die Führungen auf:

3. Drücken Sie das Gerät auf den Führungen nach unten:

4. Befestigen Sie das Gerät mit den Schrauben und den Unterlegscheiben an den Gewindebolzen:

- ⇒ Sie haben den Unterbaubremswiderstand eingebaut.
- 5. Schließen Sie den Bremswiderstand an. Beachten Sie für den ordnungsgemäßen Anschluss der Kabel die Klemmenbeschreibung X21, siehe Kapitel 5.9.
- 6. Parametrieren Sie den Bremswiderstand im Umrichter.

40

WE KEEP THINGS MOVING

4.2.2 EMV-Schirmblech oder Bremsmodul anbauen

4.2.2.1 EMV-Schirmblech EM 5000 anbauen

Das EMV-Schirmblech EM 5000 setzen Sie ein, um den Kabelschirm des Leistungskabels aufzulegen. Hinsichtlich der Mechanik sind das EMV-Schirmblech EM 5000 und das Bremsmodul BRM 5000 identisch. Folglich ist auch der Anbau für beide Zubehörteile gleich, siehe Kapitel 4.2.2.2 Bremsmodul BRM 5000 anbauen.

4.2.2.2 Bremsmodul BRM 5000 anbauen

Das Bremsmodul BRM 5000 setzen Sie ein, um den Kabelschirm des Leistungskabels aufzulegen. Das Modul umfasst zusätzlich die Leistungselektronik zur optionalen Bremsenansteuerung7 für eine 24-V-Bremse.

Gefahr von Personen- und Sachschäden durch elektrischen Schlag!

▶ Schalten Sie vor sämtlichen Arbeiten am Umrichter alle Versorgungsspannungen ab! Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

Voraussetzungen:

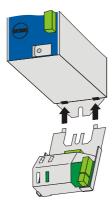
Sie haben den Umrichter bereits im Schaltschrank eingebaut.

Sie benötigen:

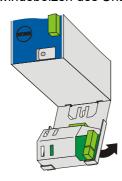
Ein Kreuzschlitzschraubendreher zum Lösen der Befestigungsschraube.

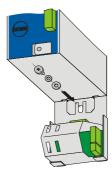
Bremsmodul BRM 5000 anbauen

1. Lösen Sie die untere Befestigungsschraube und die Unterlegscheiben des Umrichters:



Einbau


Projektierhandbuch POSIDRIVE® FDS 5000


2. Führen Sie das Bauteil leicht angewinkelt in die Öffnungen am Umrichter ein:

3. Drücken Sie die Rückseite des Bauteils entweder direkt an die Montageplatte oder an den Gewindebolzen des Unterbaus an:

4. Befestigen Sie das Bauteil mit der Befestigungsschraube sowie den Unterlegscheiben an Umrichter und Montageplatte oder Gewindebolzen.

⇒ Sie haben das Zubehör angebaut.

WE KEEP THINGS MOVING

4.2.3 Klemmenerweiterung LEA 5000 einbauen

MARNUNG!

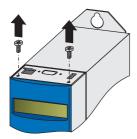
Gefahr von Personen- und Sachschäden durch elektrischen Schlag!

▶ Schalten Sie vor sämtlichen Arbeiten am Umrichter alle Versorgungsspannungen ab! Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

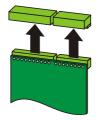
ACHTUNG

Sachschaden durch zum Beispiel elektrostatische Entladung!

- ► Treffen Sie bei der Handhabung offener Leiterplatten geeignete Schutzmaßnahmen, z. B. ESD-gerechte Kleidung, schmutz- und fettfreie Umgebung.
- ▶ Berühren Sie nicht die Kontaktflächen.

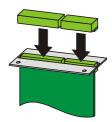

Mit dem Zubehör LEA 5000 können die Standardklemmen des FDS 5000 um 8 binäre Eingänge und 8 binäre Ausgänge erweitert werden. Das Zubehör wird oberhalb des Umrichterdisplays eingebaut.

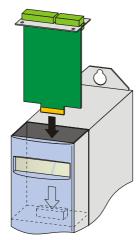
Für den Einbau der LEA 5000 benötigen Sie:

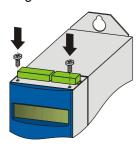

- · Das dem Zubehör beigefügte Blech.
- · Einen Kreuzschlitzschraubendreher.

LEA 5000 in einen FDS 5000 einbauen

1. Lösen Sie die Befestigungsschrauben und nehmen Sie das Abdeckblech ab:


2. Ziehen Sie von der Klemmenerweiterung LEA 5000 die Stecker ab.


3. Setzen Sie das Blech über die Grundleisten. Beachten Sie dabei die Ausrichtung des Blechs!


4. Stecken Sie die Stecker wieder auf die Klemmenerweiterung auf.

5. Führen Sie die Optionsplatine in den Umrichter, so dass die Goldkontakte in den schwarzen Klemmblock geschoben werden:

6. Befestigen Sie mit den Befestigungsschrauben das Blech am Umrichter:

EEP THINGS MOVING

⇒ Sie haben das Zubehör eingebaut.

4.2.4 CANopen-, PROFIBUS-, EtherCAT- oder PROFINET-Zubehör einbauen

Gefahr von Personen- und Sachschäden durch elektrischen Schlag!

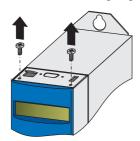
▶ Schalten Sie vor sämtlichen Arbeiten am Umrichter alle Versorgungsspannungen ab! Beachten Sie, dass die Entladungszeit der Zwischenkreiskondensatoren bis zu 6 Minuten beträgt. Sie können erst nach dieser Zeitspanne die Spannungsfreiheit feststellen.

ACHTUNG

Sachschaden durch zum Beispiel elektrostatische Entladung!

- ► Treffen Sie bei der Handhabung offener Leiterplatten geeignete Schutzmaßnahmen, z. B. ESD-gerechte Kleidung, schmutz- und fettfreie Umgebung.
- ▶ Berühren Sie nicht die Kontaktflächen.

Für den Anschluss von CANopen oder PROFIBUS benötigen Sie folgendes Zubehör. Das Zubehör wird oberhalb des Umrichterdisplays eingebaut:


CANopen: CAN 5000PROFIBUS: DP 5000

Für den Einbau von CAN 5000 oder DP 5000 benötigen Sie:

- Einen Torxschraubendreher TX10.
- · Eine Zange.
- · Sechskant-Steckschlüssel 4,5 mm.

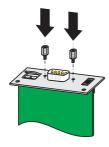
CAN 5000 oder DP 5000 in einen Umrichter einbauen

1. Lösen Sie die Befestigungsschrauben und nehmen Sie das Abdeckblech ab:

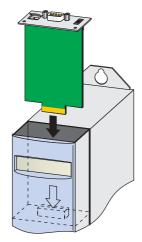
Einbau


Projektierhandbuch POSIDRIVE® FDS 5000

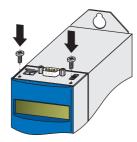
2. Entfernen Sie mit einer Zange das ausgestanzte Blechteil:


3. Entfernen Sie die Schrauben auf der Optionsplatine:

4. Führen Sie den Sub-D-Stecker der Platine von unten durch das Blech:



5. Befestigen Sie mit den in Schritt 3 gelösten Schrauben die Platine am Blech:



WE KEEP THINGS MOVING

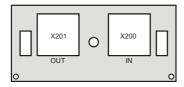
6. Führen Sie die Optionsplatine in den Umrichter, so dass die Goldkontakte in den schwarzen Klemmblock geschoben werden:

7. Befestigen Sie mit den Befestigungsschrauben das Blech am Umrichter:

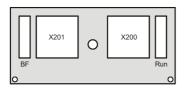
⇒ Sie haben das Zubehör eingebaut.

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

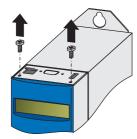


Für den Anschluss von EtherCAT oder PROFINET benötigen Sie folgendes Zubehör. Das Zubehör wird oberhalb des Umrichterdisplays eingebaut:


EtherCAT: ECS 5000PROFINET: PN 5000

Für den Einbau benötigen Sie:

- Einen Torxschraubendreher TX10; einen Kreuzschlitzschraubendreher.
- Für den Einbau der ECS 5000 folgendes Abdeckblech, das dem Zubehör beigelegt ist:

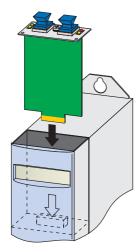

Für den Einbau der PN 5000 folgendes Abdeckblech, das dem Zubehör beigelegt ist:

· Die Schraube mit Sperrkantscheibe, die dem Zubehör beigelegt ist.

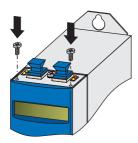
ECS 5000 oder PN 5000 in einen Umrichter einbauen

1. Lösen Sie die Befestigungsschrauben und nehmen Sie das Abdeckblech ab:

2. Führen Sie die RJ45-Stecker der Platine von unten durch das Blech, das dem Zubehör beigelegt ist:



WE KEEP THINGS MOVING


3. Befestigen Sie mit der beigelegten Schraube mit Sperrkantscheibe das Blech an der Platine:

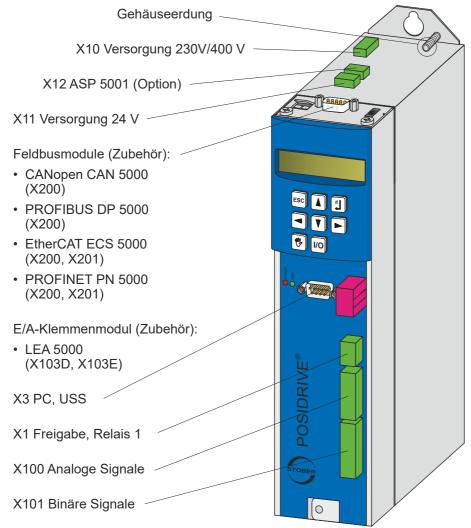
4. Führen Sie die Optionsplatine in den Umrichter, so dass die Goldkontakte in den schwarzen Klemmblock geschoben werden:

5. Befestigen Sie mit den Befestigungsschrauben das Blech am Umrichter:

⇒ Sie haben das Zubehör eingebaut.

WE KEEP THINGS MOVING

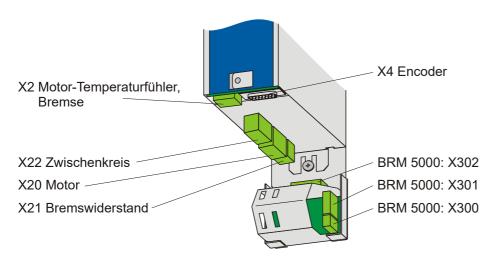
Projektierhandbuch POSIDRIVE® FDS 5000

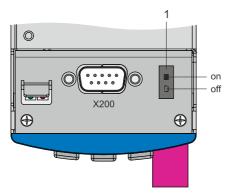


5 Anschluss

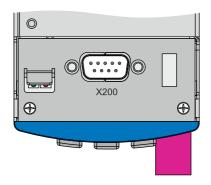
5.1 Klemmenübersicht

Gerätefront und Geräteoberseite


(im Beispiel mit Feldbusmodul CAN 5000)

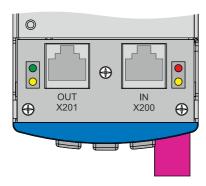

Geräteunterseite

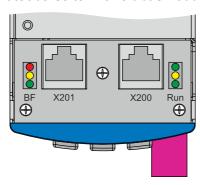
(im Beispiel mit Bremsmodul BRM 5000)


5.1.1 Feldbusmodule

Geräteoberseite mit Feldbusmodul CANopen CAN 5000

1 Interner Abschlusswiderstand 120 Ω zuschaltbar


Geräteoberseite mit Feldbusmodul PROFIBUS DP 5000


Projektierhandbuch POSIDRIVE® FDS 5000

Geräteoberseite mit Feldbusmodul EtherCAT ECS 5000

Geräteoberseite mit Feldbusmodul PROFINET PN 5000

52 ID 442268.10

WE KEEP THINGS MOVING

5.2 EMV-gerechter Anschluss

Information

In diesem Kapitel finden Sie generelle Informationen zur EMV-gerechten Installation. Hierbei handelt es sich um Empfehlungen. Abhängig von der Anwendung, den Umgebungsbedingungen sowie den gesetzlichen Auflagen können über diese Empfehlungen hinausgehende Maßnahmen erforderlich sein.

- Verlegen Sie Netzleitung, Motorkabel und Signalleitungen getrennt voneinander, z. B. in getrennten Kabelkanälen.
- · Verwenden Sie auschließlich geschirmte Kabel als Motorkabel.
- Wird die Bremsleitung im Motorkabel mitgeführt, muss die Bremsleitung separat abgeschirmt werden.
- Legen Sie den Schirm des Motorkabels großflächig und in unmittelbarer Nähe zum Umrichter auf.
 Verwenden Sie dazu das EMV-Schirmblech EM 5000 oder das mechanisch identische Bremsmodul BRM 5000.
- Führen Sie das Kabel zum Anschluss eines Bremswiderstands geschirmt aus, falls es eine Länge von 30 cm überschreitet. Legen Sie in diesem Fall den Schirm großflächig in unmittelbarer Nähe zum Umrichter auf
- Legen Sie bei Motoren mit Klemmkasten den Schirm großflächig am Klemmkasten auf. Verwenden Sie z. B. EMV-Kabelverschraubungen.
- Verbinden Sie den Schirm von Steuerleitungen einseitig mit der Bezugsmasse der Quelle, z. B. der SPS oder CNC.

WE KEEP THINGS MOVING

5.3 X10: Versorgung 230 V/400 V

Klemmenbeschreibung – Einphasiger Netzanschluss BG 0

Pin	Bezeichnung	Funktion	Daten
	_	Kunststoffblindstecker	_
	L1	Eingangsspannung	230 V +20 %/-40 % 50/60 Hz
Z	N	Neutralleiter	_
	PE	Schutzleiter	_

Klemmenbeschreibung – dreiphasiger Netzanschluss

Pin		Bezeichnung	Funktion	Daten
BG 0	BG 1	L1		3 x 400 V +32 %/-50 % 50 Hz
		L2	Eingangsspannung	oder
		L3		3 x 480 V +10 %/-58 % 60 Hz
		PE	Schutzleiter	_

Mindest-Anzugsmoment M_{min} Schraubklemmen

Baugröße	BG 1		
Einheit	[Nm]	[lb-in]	
M _{min}	0,5	4,4	

Maximaler Leiterquerschnitt Leistungsklemmen

Baugröße	BG 0	BG 1
Querschnitt [mm ²]	2,5	4

5.3.1 Netzsicherung

Mit Hilfe der Netzsicherung wird im Gerät der Leitungs- und Leistungsschutz gewährleistet. Hierzu können verschiedene Schutzgeräte genutzt werden:

- Ganzbereichs-Schmelzsicherung (Betriebsklasse "gG" nach IEC Betriebsklassenspezifizierung bzw. "träg" nach VDE)
- Leitungsschutzschalter
 Verwenden Sie Leitungsschutzschalter mit Auslösecharakteristik C nach EN 60898.
- Leistungsschalter

Setzen Sie für einen UL-konformen Einsatz Sicherungen der Klasse RK1 (z. B. Bussmann KTS-R-xxA/600 V), CF, J, T oder G ein. Alternativ können Sie für Geräte der Baugrößen BG 0 und BG 1 Sicherungen der Klasse CC verwenden.

Тур	Eingangsstrom	Sicherungskennwert			
	I _{1N,PU}	Empfohlen	Bei UL-konformem Einsatz	Bei Zwischenkreiskopplung in Gruppe 1	
FDS 5007A	1 x 5,9 A	1 x 10 A	1 x 10 A	1 x 10 A	
FDS 5004A	3 x 1,4 A	3 x 6 A	3 x 6 A	3 x 10 A	
FDS 5008A	3 x 2 A	3 x 6 A	3 x 6 A	3 x 10 A	
FDS 5015A	3 x 3,7 A	3 x 10 A	3 x 10 A	3 x 10 A	
FDS 5022A	3 x 5,3 A	3 x 10 A	3 x 10 A	3 x 20 A	
FDS 5040A	3 x 9,3 A	3 x 16 A	3 x 15 A	3 x 20 A	
FDS 5055A	3 x 12,3 A	3 x 16 A	3 x 15 A	3 x 20 A	
FDS 5075A	3 x 15,8 A	3 x 20 A	3 x 20 A	3 x 20 A	

Die Umrichter sind nur für den Gebrauch an Versorgungsstromnetzen geeignet, die bei 480 Volt höchstens einen maximal symmetrischen Nennkurzschlussstrom gemäß folgender Tabelle liefern können:

Baugröße	Max. symmetrischer Nennkurzschlussstrom
BG 0 und BG 1	5000 A

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

5.3.2 Fehlerstrom-Schutzeinrichtung

Zur Erkennung von Fehlerströmen können die Geräte von STÖBER über eine Fehlerstrom-Schutzeinrichtung (Residual Current protective Device, RCD) abgesichert werden. Fehlerstrom-Schutzeinrichtungen vermeiden Stromunfälle, insbesondere dem Erdschluss über den Körper. Sie unterscheiden sich generell in ihrer Auslöseschwelle und Eignung zur Erfassung unterschiedlicher Fehlerstromformen.

Funktionsbedingt kommt es beim Betrieb von Umrichtern zu Ableitströmen. Ableitströme werden von Fehlerstrom-Schutzeinrichtungen als Fehlerströme interpretiert und können so zu Fehlauslösungen führen. In Abhängigkeit von den jeweiligen Netzanschlüssen können Fehlerströme mit und ohne Gleichstromanteil auftreten. Berücksichtigen Sie aus diesem Grund bei der Auswahl eines geeigneten RCDs sowohl die Höhe als auch die Form des möglichen Ableit- oder Fehlerstroms.

↑ GEFAHR!

Elektrischer Schlag!

Die Kombination aus 1-phasigen Umrichtern und Fehlerstrom-Schutzeinrichtungen des Typs A oder AC kann zu Fehlauslösungen der RCDs führen.

Bei 3-phasigen Umrichtern können Ableitströme mit Gleichstromanteil auftreten.

- ► Sichern Sie 1-phasige Umrichter immer durch allstromsensitive Fehlerstrom-Schutzeinrichtungen des Typs B oder durch mischfrequenzsensitive des Typs F ab.
- ► Sichern Sie 3-phasige Umrichter immer durch allstromsensitive Fehlerstrom-Schutzeinrichtungen des Typs B ab.

Fehlauslösungen - Ursachen

Durch Streukapazitäten und Unsymmetrien bedingt, können Ableitströme größer 30 mA während des Betriebs auftreten. Unerwünschte Fehlauslösungen entstehen unter folgenden Bedingungen:

- Beim Zuschalten der Umrichter an die Netzspannung.
 Diese Fehlauslösungen können durch den Einsatz von kurzzeitverzögerten (superresistent), selektiven (abschaltverzögert) Fehlerstrom-Schutzeinrichtungen oder durch solche mit erhöhtem Auslösestrom (z. B. 300 oder 500 mA) behoben werden.
- Durch betriebsmäßig auftretende höherfrequente Ableitströme bei langen Motorkabeln.
 Diese Fehlauslösungen können beispielsweise durch niederkapazitive Kabel oder eine Ausgangsdrosseln behoben werden.
- Durch starke Unsymmetrien im Versorgungsnetz.
 Diese Fehlauslösungen können z. B. durch einen Trenntransformator behoben werden.

Information

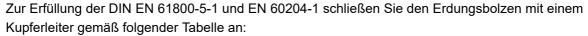
Prüfen Sie, ob der Einsatz von Fehlerstrom-Schutzeinrichtungen mit erhöhtem Auslösestrom oder kurzzeitverzögerten bzw. abschaltverzögerten Auslösecharakteristiken in Ihrer Anwendung zulässig ist.

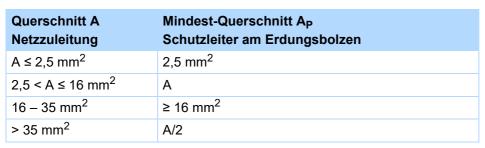
Installation

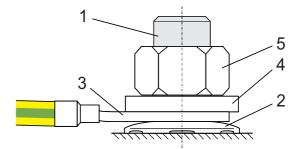
Elektrischer Schlag!

Ableit- und Fehlerströme mit Gleichstromanteil können die Funktionsfähigkeit von Fehlerstrom-Schutzeinrichtungen der Typen A und AC einschränken.

Beachten Sie unbedingt die Installationshinweise der verwendeten Schutzeinrichtungen.


5.3.3 Gehäuseerdung


Beachten Sie für eine korrekte Gehäuseerdung die folgenden Informationen zum Anschluss des Schutzleiters:


- Beachten Sie die Montagereihenfolge auf dem M6-Erdungsbolzen (1):
 - 2 Kontaktscheibe
 - 3 Kabelschuh
 - 4 Unterlegscheibe
 - 5 Mutter

Kontaktscheibe, Unterlegscheibe und Mutter werden mit dem Umrichter geliefert.

- Anzugsmoment: 4 Nm
- Im normalen Betrieb können Ableitströme > 10 mA auftreten.

Projektierhandbuch POSIDRIVE® FDS 5000

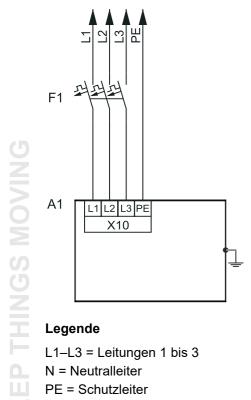
5.3.4 **Formierung**

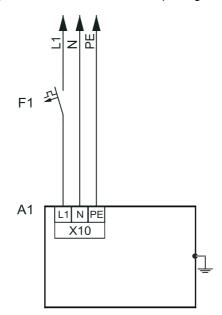
ACHTUNG

Sachschaden!

Die Zwischenkreiskondensatoren von Geräten der Baugröße BG 0, BG 1 und BG 2 können durch lange Lagerzeiten ihre Spannungsfestigkeit verlieren. Durch eine verminderte Spannungsfestigkeit der Zwischenkreiskondensatoren kann beim Einschalten ein erheblicher Sachschaden entstehen.

► Formieren Sie gelagerte Geräte jährlich oder vor der Inbetriebnahme.


Führen Sie eine Formierung bei gelagerten Geräten durch.



Information

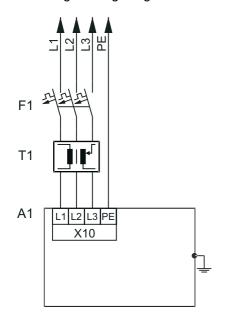
STÖBER empfiehlt, gelagerte Geräte einmal im Jahr für eine Stunde gemäß der nachfolgend gezeigten Verschaltung an die Versorgungsspannung anzuschließen. Bitte beachten Sie, dass die Umrichter ausschließlich für den Betrieb an TN-Netzen vorgesehen sind.

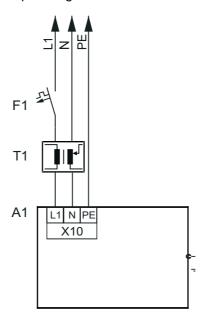
Nachfolgende Grafiken zeigen den prinzipiellen Netzanschluss für 3-phasige und für 1-phasige Geräte.

Legende

L1-L3 = Leitungen 1 bis 3

N = Neutralleiter


PE = Schutzleiter


F1 = Sicherung

A1 = Umrichter

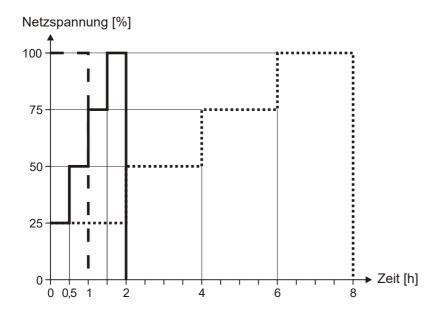
Ist eine jährliche Formierung nicht möglich, formieren Sie gelagerte Geräte vor der Inbetriebnahme gemäß der im Folgenden gezeigten Verschaltung und Spannungshöhen.

Legende

L1-L3 = Leitungen 1 bis 3

N = Neutralleiter

PE = Schutzleiter


F1 = Sicherung

T1 = Stelltransformator

A1 = Umrichter

Projektierhandbuch POSIDRIVE® FDS 5000

Lagerungszeit 1 - 2 Jahre: Vor dem Einschalten eine Stunde

an Spannung legen.

Lagerungszeit 2 - 3 Jahre: Vor dem Einschalten entspr. der

Kurve formieren.

Lagerungszeit ≥3 Jahre: Vor dem Einschalten entspr. der

Kurve formieren.

Lagerungszeit unter 1 Jahr: Keine Maßnahmen erforderlich.

5.4 X11: Versorgung 24 V

Der Anschluss von 24 V an X11 ist bei der Gerätevariante /L für die Versorgung des Steuerteils erforderlich.

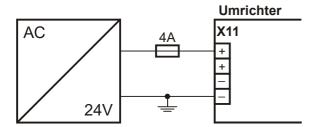
ACHTUNG

Gefahr des Geräteschadens durch Überlastung!

▶ Wird die 24-V-Versorgung durchgeschleift, dürfen max. vier Geräte an einer Linie versorgt werden.

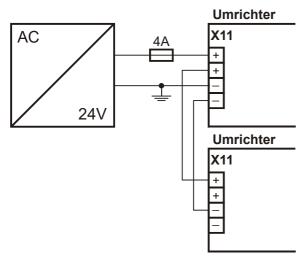
Klemmenbeschreibung BG 0 und BG 1

Pin		Bezeichnung	Funktion	Daten
	+	+ 24 V	Hilfsspannung (PELV) zur Versorgung der	$U_{1CU} = 20.4 - 28.8 \text{ V}$
	+	+ 24 V	Steuerelektronik.	$I_{1\text{maxCU}} = 1.5 \text{ A}$
	_	GND	Bezugspotential für +24 V —	
	_	GND	bezugspotential für +24 v	_


Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Anschlussbeispiel


Wird die 24-V-Versorgung durchgeschleift, dürfen max. vier Geräte an einer Linie versorgt werden. Für einen UL-konformen Einsatz ist die Verwendung einer Sicherung 4 A in der 24-V-Zuleitung Vorschrift. Die Sicherung muss nach UL 248 zugelassen sein.

BG 0 und BG 1

Beispiel für den Anschluss von zwei Geräten

5.5 X1: Freigabe und Relais 1

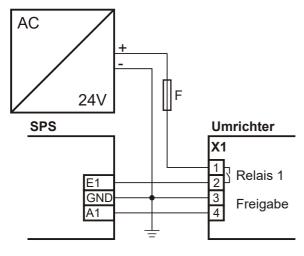
Mit dem Freigabe-Signal geben Sie das Leistungsteil des Umrichters frei. Die Funktion von Relais 1 ist ab V 5.5-C einstellbar in Parameter *F10*.

Allgemeine Spezifikation	
Maximale Kabellänge	30 m

Klemmenbeschreibung

WE KEEP THINGS MOVING

Pin		Bezeichnung	Funktion	Daten
	1	Kontakt 1		U _{max} = 30 V
○	2	Kontakt 2	Relais 1	I _{max} = 1,0 A Lebenserwartung (Anzahl Schaltungen): • Mechanisch min. 5 000 000 Schalt.; • bei 24 V/1A (ohm. Last): 300 000 Schalt. Empfohlene Absicherung: max. 1 A (träge)
	3	GND		High-Pegel ≥12 V
	4	+ Eingang	Freigabe des Leistungsteils	Low-Pegel < 8 V I _{1max} = 16 mA U _{1max} = 30 V



Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Anschlussbeispiel

Für einen UL-konformen Einsatz ist die Verwendung einer Sicherung 1 A vor Relais 1 Vorschrift. Die Sicherung muss nach UL 248 zugelassen sein.

5.6 X20: Motor

Klemmenbeschreibung BG 0 und BG 1

Pin		Bezeichnung	Funktion
BG 0	BG 1	U	Motoranschluss Phase U
		V	Motoranschluss Phase V
		W	Motoranschluss Phase W
	© Chil	PE	Schutzleiter

Mindest-Anzugsmoment \mathbf{M}_{\min} Schraubklemmen

Baugröße BG 1		
Einheit	[Nm]	[lb-in]
M _{min}	0,5	4,4

Maximaler Leiterquerschnitt Leistungsklemmen

Baugröße	BG 0	BG 1
Querschnitt [mm ²]	2,5	4

Maximale Motorkabellänge

Beachten Sie die maximalen Motor-Kabellängen gemäß folgender Tabelle:

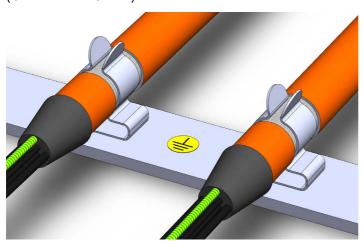
Baugröße	BG 0 und BG 1
Ohne Ausgangsdrossel	50 m
Mit Ausgangsdrossel	100 m

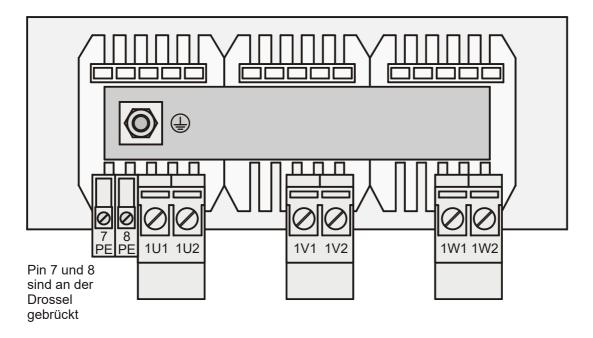
Anschluss ohne Ausgangsdrossel

Beachten Sie beim Anschluss des Motors ohne Ausgangsdrossel folgende Punkte:

- Erden Sie den Schirm des Motorkabels auf der dafür am Umrichter vorgesehenen Schirmauflage.
- Halten Sie die frei liegenden Stromleiter so kurz wie möglich. Alle EMV-empfindlichen Geräte und Schaltungen müssen mindestens 0,3 m entfernt sein.

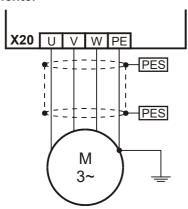
Anschluss mit Ausgangsdrossel


WE KEEP THINGS MOVING


Beachten Sie beim Anschluss des Motors mit Ausgangsdrossel folgende Punkte:

- Erden Sie den Schirm des Motorkabels großflächig in unmittelbarer Nähe zur Ausgangsdrossel, z. B. mit elektrisch leitenden Metallkabelklemmen auf einer geerdeten Verbindungsschiene.
- Halten Sie die frei liegenden Stromleiter so kurz wie möglich. Alle EMV-empfindlichen Geräte und Schaltungen müssen mindestens 0,3 m entfernt sein.

Nachfolgende Grafik zeigt ein Beispiel für den geschirmten Anschluss eines Motors mit Ausgangsdrossel (Grafik: icotek GmbH).


Projektierhandbuch POSIDRIVE® FDS 5000

Anschlussbeispiel

PES: HF-Schirmanschluss durch großflächige Anbindung an PE

Umrichter

5.7 X12: ASP 5001 – Sicher abgeschaltetes Moment

Information

Wenn Sie die Sicherheitsfunktion verwenden möchten, benötigen Sie die Option ASP 5001. Lesen Sie unbedingt die Betriebsanleitung ASP 5001, siehe Kapitel 1.2 Weiterführende Dokumentationen, und binden Sie die Sicherheitstechnik gemäß der dortigen Beschreibung in Ihren Sicherheitskreis ein.

Beschalten Sie die Option ASP 5001 gemäß der folgenden Beschreibung, wenn Sie keine Sicherheitstechnik verwenden möchten.

Information

Bitte beachten Sie, dass die folgende Beschreibung für die ASP 5001 gilt. Für die Beschreibung der ASP 5000 wenden Sie sich an applications@stoeber.de.

Klemmenbeschreibung X12

Pin		Bez.	Funktion	Daten	Beschaltung (Falls Sicherheitstechnik nicht verwendet wird!)
	2	NC-Kontakt (Öffner)	Rückmeldekontak t; muss in den Sicherheitskreis der Steuerung eingebunden werden!	Beachten Sie die Angaben in der Betriebsanleitung ASP 5001, siehe Kapitel 1.2 Weiterführende Dokumentationen.	Umrichter X12
	3	Relaisspule+		$U_1 = 20.4 - 28.8 V_{DC}$	+ 2
	4	Relaisspule-	Ansteuerung ^{a)}	(PELV) I _{1Typ} = 50 mA I _{1max} = 70 mA Beachten Sie die Angaben in der Betriebsanleitung ASP 5001, siehe Kapitel 1.2 Weiterführende Dokumentationen.	24V

a) Für einen UL-konformen Einsatz ist die Verwendung einer Sicherung 4 AT in der 24-V-Zuleitung Vorschrift. Die Sicherung muss nach UL 248 zugelassen sein.

VE KEEP THINGS MOV

Projektierhandbuch POSIDRIVE® FDS 5000

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

5.8 X2; X300 – X302; X141: Motor-Temperaturfühler, Motor-Haltebremse

An der Klemme X2 schließen Sie die Motor-Temperaturfühler und den Leistungsschalter zur Ansteuerung der Motor-Haltebremse an.

Anschluss Motor-Haltebremse

Beachten Sie, dass der Schaltkontakt an X2 nicht für den direkten Anschluss einer Bremse geeignet ist. Verwenden Sie stattdessen das Zubehörteil

BRM 5000 oder einen geeigneten Leistungsschalter.

Anschluss Motor-Temperaturfühler

Motorwicklungen werden thermisch durch Motor-Temperaturfühler wie PTC-Thermistoren, KTY- oder Pt-Temperaturfühler überwacht.

Bei PTC-Thermistoren handelt es sich um Thermistoren, deren Widerstand sich mit der Temperatur deutlich verändert. Erreicht ein PTC seine definierte Nenn-Ansprechtemperatur, steigt der Widerstand sprunghaft um ein Vielfaches auf mehrere kOhm an. Da PTC-Drillinge eingesetzt werden, überwacht ein Thermistor je eine Phase der Motorwicklung. Bei 3 Thermistoren werden also alle 3 Phasen übwerwacht, wodurch ein effektiver Motorschutz erreicht wird.

KTY- oder Pt-Temperaturfühler hingegen sind Temperaturfühler mit Widerstandskennlinien, die der Temperatur linear folgen. Sie ermöglichen somit analoge Messungen der Motortemperaturen. Die Messungen sind allerdings auf jeweils eine Phase der Motorwicklung beschränkt, weshalb der Motorschutz gegenüber PTC-Drillingen deutlich eingeschränkt ist.

Information

Beachten Sie, dass die Auswertung eines Pt1000 erst ab Firmware V 5.6-S möglich ist. Bedenken Sie vor dem Einsatz eines Pt- oder KTY-Sensors, dass damit der Motorschutz nicht im gleichen Maße gewährleistet ist wie bei der Überwachung mit einem PTC-Drilling.

Information

Beachten Sie, dass die Auswertung der Temperaturfühler immer aktiv ist. Ist ein Betrieb ohne Temperaturfühler zulässig, müssen die Anschlüsse an X2 gebrückt werden, ansonsten wird beim Einschalten des Geräts eine Störung ausgelöst.

Klemmenbeschreibung X2

Pin		Funktion	Daten
	1	1BD1	Max. • 250 V _{AC} /5 A • 30 V _{DC} /5 A (ohm. Last) • 30 V _{DC} /0,3 A (ind. Last) UL
1 2 3 4 0 4 0	2	1BD2	 250 V_{AC}/4 A 30 V_{DC}/3 A (ohm. Last) t₂ = 1 ms Schaltzeit: 15 ms Schaltspiele: mechanisch 30 000 000 100 000 bei 250 V_{AC}/0,6 A (ohm. Last) 300 000 bei 30 V_{DC}/0,3 A (ohm. Last) Empfohlene Absicherung: max. 1 A (träge)
	3	1TP1/1K1+	Max. 2 PTC-Drillinge (in Reihenschaltung) oder
	4	1TP2/1K2-	1 KTY84-130 oder 1 Pt1000

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	2,5
Flexibel	2,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	2,5
Flexibel mit Aderendhülse mit Kunststoffhülse	2,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	1,5

Projektierhandbuch POSIDRIVE® FDS 5000

Weitere Kabelanforderungen

Technische Daten	
Abisolierlänge	10 mm

Anschluss einer 24 V-Motor-Haltebremse und des Temperaturfühlers mit BRM 5000

Um eine 24 V-Motor-Haltebremse am Umrichter anzuschließen, können Sie das optionale Bremsmodul BRM 5000 verwenden.

Λ

WARNUNG!

Gefahr von Personen- und Sachschäden durch elektrischen Schlag!

► Achten Sie auf eine ausreichende Zugentlastung des Leistungskabels! Beachten Sie, dass das Optionsmodul nicht die Funktion einer Zugentlastung erfüllt.

Klemmenbeschreibung X300 auf BRM 5000

An der Klemme X300 schließen Sie die 24 V-Versorgung des Bremsmoduls an.

Pin		Bezeichnung	Funktion	Daten
	+	24 V	Einspeisung für Bremsenansteuerung	$U_1 = 24 - 30 \text{ V}$ $I_{1\text{max}} = 2,5 \text{ A}$ Absicherung: bis max. 6 AT gemäß verwendeter Bremse
	_	GND	Bezugspotenzial für 24 V	_

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	2,5
Flexibel	2,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	2,5
Flexibel mit Aderendhülse mit Kunststoffhülse	2,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	1,5

Weitere Kabelanforderungen

Technische Daten	
Abisolierlänge	10 mm

Klemmenbeschreibung X301 auf BRM 5000

An der Klemme X301 schließen Sie die Motor-Haltebremse und den Motor-Temperaturfühler an.

Pin		Bezeichnung	Funktion	Daten
	1	1BD2	Bezugspotenzial zu Pin 2	_
	2	1BD1	Ansteuerung der Bremse	I _{2max} ≤ 2,5 A: max. 10 Schaltzyklen pro min.
	3	1TP1/1K1+	Temperaturfühler	Max. 6 PTC oder ein KTY84-130, max. Kabellänge: 50 m
	4	1TP2/1K2-		

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	2,5
Flexibel	2,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	2,5
Flexibel mit Aderendhülse mit Kunststoffhülse	2,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	1,5

Weitere Kabelanforderungen

Technische Daten	
Abisolierlänge	10 mm

Klemmenbeschreibung X302 auf BRM 5000

Die Klemme X302 verbinden Sie mit der Klemme X2 am Umrichter.

Pin		Bezeichnung	Funktion
5 6 6 7 8 0	5	1TP2/1K2-	Temperaturfühler, mit Pin 4 an X2 verbinden
	6	1TP1/1K1+	Temperaturfühler, mit Pin 3 an X2 verbinden
	7	1BD2	Ansteuerung der Bremse, mit Pin 2 an X2 verbinden
	8	1BD1	Ansteuerung der Bremse, mit Pin 1 an X2 verbinden

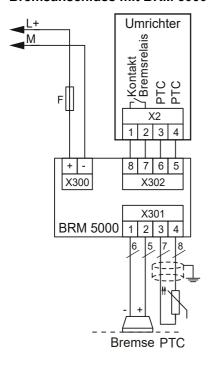
Projektierhandbuch POSIDRIVE® FDS 5000

Maximaler Leiterquerschnitt

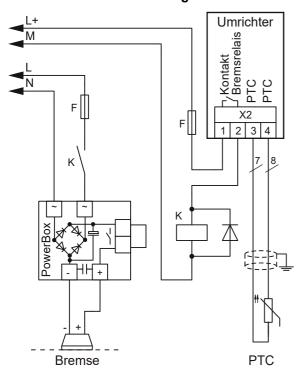
Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	2,5
Flexibel	2,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	2,5
Flexibel mit Aderendhülse mit Kunststoffhülse	2,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	1,5

Weitere Kabelanforderungen

Technische Daten	
Abisolierlänge	10 mm


Information

Beachten Sie, dass auf dem Bremsmodul eine LED eingebaut ist. Die LED zeigt den Zustand der Bremsenansteuerung:


- LED ein: Bremsenausgang bestromt (aktiv)
- LED aus: Bremsenausgang nicht bestromt (inaktiv)

Bremsanschluss mit BRM 5000 für 24 V DC Bremsen

Indirekte Bremsansteuerung

5.9 X21: Bremswiderstand

Bei generatorischem Betrieb kann ein externer Bremswiderstand erforderlich sein. Die technischen Daten der Bremswiderstände finden Sie in Kapitel 3.

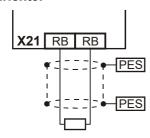
Klemmenbeschreibung BG 0 und BG 1

Pin		Bezeichnung	Funktion
BG 0	BG 1	RB	
RB RB	□□·R □□·R	RB	Anschluss Bremswiderstand

Mindest-Anzugsmoment M_{min} Schraubklemmen

Baugröße	В	G 1
Einheit	[Nm]	[lb-in]
M _{min}	0,5	4,4

Maximaler Leiterquerschnitt Leistungsklemmen


Baugröße	BG 0	BG 1
Querschnitt [mm ²]	2,5	4

Anschlussbeispiel

Verwenden Sie ein geschirmtes Kabel bei Kabellängen von mehr als 30 cm zwischen Bremswiderstand und Gerät.

Umrichter

WE KEEP THINGS MOVING

5.10 X22: Zwischenkreiskopplung

Information

Bitte beachten Sie, dass die hier beschriebene Zwischenkreiskopplung ausschließlich mit den Gerätefamilien MDS 5000, SDS 5000 und FDS 5000 aufgebaut werden kann.

Wenn Sie in einer Anlage Achsen betreiben, die ständig gegen andere Achsen fahren, kann die Zwischenkreiskopplung (ZK-Kopplung) Vorteile bringen. Bei der ZK-Kopplung wird die überschüssige Energie anderen Achsen als Antriebsleistung zur Verfügung gestellt, anstatt sie über einen Bremswiderstand in Wärme umzusetzen. Beachten Sie, dass Sie beim gleichzeitigen Bremsen aller Antriebe im ZK-Verbund einen Bremswiderstand benötigen, der die Energiespitzen abfangen kann.

GEFAHR!

Gefahr von Geräteschäden! Bei der Kopplung von einphasigen und dreiphasigen Geräten kommt es zur Zerstörung der einphasigen Geräte.

▶ Verwenden Sie für die ZK-Kopplung nur dreiphasige Geräte!

ACHTUNG

Gefahr von Geräteschäden!

Weil beim Ausfall eines Geräts weitere Geräte beschädigt sein könnten, muss der Ausfall die Trennung des gesamten Zwischenkreisverbunds vom Netz auslösen.

- ▶ Beachten Sie die Verdrahtung und Parametrierung von Relais 1 im Abschnitt Prinzipschaltbild (X1.1 und X1.2).
- ► Tauschen Sie bei einem Ausfall alle Geräte einer Gruppe.

Information

Bitte beachten Sie, dass für eine korrekte Funktion der ZK-Kopplung der Parameter *A38 DC-Einspeisung* eingestellt werden muss:

Gruppe 1: A38 = 0:inaktiv

Gruppe 2 und 3: *A38* = 1:aktiv

Beachten Sie dazu auch die Beschreibung des Parameters.

WE KEEP THINGS MOVING

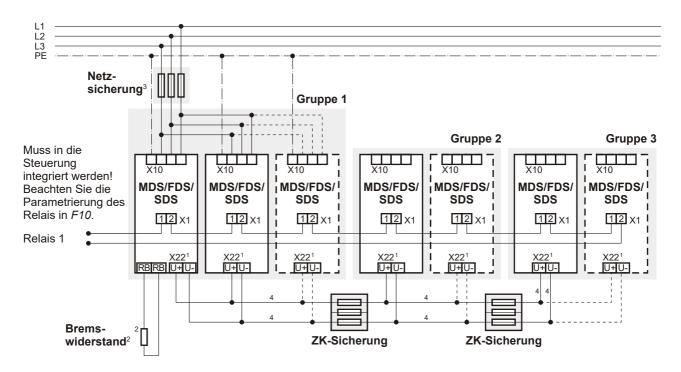
Projektierhandbuch POSIDRIVE® FDS 5000

Klemmenbeschreibung X22 (BG 0 und BG 1)

Pin		Bezeichnung	Funktion
BG 0	BG 1	-U	Bezugspotenzial für Zwischenkreis
	©□·ċ	-U	bezugspoteriziai fui Zwischenkreis
		+U	
O <mark>I</mark> ±	@ -ċ	+U	+ Potenzial des Zwischenkreises

${\bf Mindest\hbox{-}Anzugsmoment}\ {\bf M}_{\rm min}\ {\bf Schraubklemmen}$

Baugröße	В	3 0	BG 1		
Einheit	[Nm]	[lb-in]	[Nm]	[lb-in]	
M _{min}	0,5	4,4	0,5	4,4	


Maximaler Leiterquerschnitt Leistungsklemmen

Baugröße	BG 0	BG 1
Querschnitt [mm ²]	2,5	4

Prinzipschaltbild

Die folgende Abbildung zeigt das Prinzipschaltbild der ZK-Kopplung. Die Umrichter können in bis zu drei Gruppen miteinander gekoppelt werden. Die möglichen Kombinationen zeigt die Tabelle im folgenden Abschnitt. Die Kombination bestimmt die Typen der Netzsicherung und der ZK-Sicherung.

- Bei MDS 5000- und SDS 5000-Geräten der Baugröße BG3: X20, Klemmen ZK+, ZK-.
- Dimensionieren Sie den Bremswiderstand gemäß der Bremsleistung des ZK-Verbundes und den technischen Daten des Gerätes.
- Beachten Sie dazu Kapitel 5.3.
- Dimensionieren Sie die Leiterquerschnitte der Zwischenkreiskopplung entsprechend den Anforderungen Ihrer Anwendung. Ein Anhaltspunkt kann der maximal anschließbare Querschnitt für die Klemmen X22 bei BG 0 bis BG 2 bzw. X20 bei BG 3 sein.

Projektierhandbuch POSIDRIVE® FDS 5000

Kombinationen

Die folgende Tabelle zeigt die möglichen Kombinationen für die Zwischenkreiskopplung. Insgesamt stehen Ihnen 15 Kombinationen zur Verfügung.

Beispiel: Kombination Nr. 7:

Mit Kombination Nr. 7 können Sie einen Umrichter der BG 1 in der Gruppe 1 mit zwei Geräten der BG 0 in Gruppe 2 kombinieren. Es wird keine Gruppe 3 aufgebaut. Die Netzsicherung muss den Nennstrom 20 A aufweisen. Die Gruppen werden über die ZK-Sicherung des Typs 1 getrennt. Bevor Sie die Geräte der ZK-Kopplung wieder einschalten, müssen Sie drei Minuten warten.

	Gruppe 1				ZK- Sicherung	Grup	pe 2	ZK- Sicherung	Gruppe 3	t _{min} a)
Gerätefamilie	MDS/FI	DS/SDS	MDS	/SDS			/FDS/ DS		MDS/FDS/ SDS	
Baugröße	BG 0	BG 1	BG 2	BG 3		BG 0	BG 1		BG 0	
Netzsicherung	10 A	20 A ^{b)}	50 A ^{b)}	80 A ^{b)}		_				
P _{2maxPU} ^{c)}	4 kW	10 kW	20 kW	45 kW		_				
Kombination Nr.										
1	Max. 4	_		_	_	—	_	_	_	1
2	_	Max. 4			_	—	—	_	_	5
3	_	3			Typ 1	2	_	_		5
4	_	3		_	Typ 1	1	_	_		3
5	_	2			Typ 1	2	_	_		3
6	_	2			Typ 1	1	_	_		4
7	_	1		_	Typ 1	2	_	_		3
8	_	_	Max. 3		_	_	_	_		2
9	_	_	3		Typ 2	_	1	Typ 1	2	2
10	_	_	3	_	Typ 1	2	_	_	_	2
11			3	_	Typ 2	_	1	_	_	2
12			2	_	Typ 2	_	1	_	_	2
13	_	_	2	_	Typ 2	_	1	Typ 1	1	2
14			1	_	Typ 2	1	_	_	_	2
15		_	_	Max. 3	<u>—</u>	_	_	<u>—</u>	<u>—</u>	1

- a) Wiedereinschaltzeit
- b) Beachten Sie für einen UL-konformen Einsatz die Liste der Netzsicherungen in Kapitel 5.3.1 Netzsicherung
- c) Maximale Summe der Antriebsleistung

Anstatt den Prozess um die Wiedereinschaltzeit zu verzögern, können Sie durch Auswerten des Parameters *E14* den Wiedereinschaltzeitpunkt ermitteln. Der Parameter muss in allen netzverbundenen Geräten anzeigen, dass die Laderelais geöffnet sind, bevor die Netzspannung wieder zugeschaltet werden darf. Sie können den Parameter per Feldbus oder Binärausgang abfragen. Wenn Sie eine Zwischenkreiskopplung ausschließlich mit Geräten der Familie SDS 5000 oder A-Geräten (ab HW 200) aufbauen, müssen Sie keine Wiedereinschaltzeit beachten.

Absicherung

Gefahr des Maschinenstillstands! Beim Ausfall eines Sicherungselements kommt es zur Beschädigung des zweiten Sicherungselements.

▶ Tauschen Sie die Elemente einer Sicherung immer paarweise aus.

Beachten Sie bei Montage und Betrieb folgende Punkte:

- Verlegen Sie Zwischenkreisverbindungen mit einer Länge größer als 20 cm geschirmt. Dadurch verhindern Sie EMV-Probleme.
- Verwenden Sie die beiden äußeren Elemente des Sicherungshalters, um einen ausreichenden Spannungsabstand einzuhalten.
- Verwenden Sie für die Absicherung des Zwischenkreises die folgenden Sicherungen:

	Typ 1	Typ 2	
Hersteller	SIBA Sicherungs-Bau GmbH Borker Straße 22 D-44534 Lünen www.siba.de		
Größe	10 x 38		
Betriebsklasse	gRL		
Bemessungsspannung	AC 600 V		
Bemessungstrom	10 A	20 A	
Verlustleistung pro Element	1,6 W	3,5 W	
ArtNr. Sicherung	6003434.10	6003434.20	
ArtNr. Sicherungshalter	5106	304.3	

Projektierhandbuch POSIDRIVE® FDS 5000

5.11 X100 – X103: analoge und binäre Signale

Beachten Sie, dass die Klemmen X100 und X101 in das Gerät integriert sind. Die Klemmen X103D und X103E sind auf dem optionalen Zubehör LEA 5000 integriert.

WARNUNG!

Gefahr des Maschinenfehlverhaltens durch EMV-Störungen!

▶ Setzen Sie bei Leitungen zu analogen wie binären Ein- und Ausgängen (AE, AA, BE, BA) ausschließlich Kabel bis zu einer Länge von 30 m ein!

Information

Beachten Sie, dass die Abtastzeit der Eingänge und die Aktualisierungsrate der Ausgänge der in Parameter *A150* eingestellten Zykluszeit entsprechen.

Für zeitlich kritische Funktionen wie z. B. eine Druckmarkenregelung steht für die binären Eingänge zusätzlich ein Zeitstempel zur Verfügung.

Wenn BE-Encoder oder BA-Encodersimulation eingesetzt werden, sind Abtastzeit und Aktualisierungsrate unabhängig von der eingestellten Zykluszeit (siehe Kapitel 5.12.2 BE-Encoder und BA-Encodersimulation).

Klemmenbeschreibung X100

ACHTUNG

Maschinenbewegung durch unerwarteten Sollwert

Bei unbeschaltetem Analogeingang erkennt der Umrichter eine Sollwertvorgabe von +5V.

Betreiben Sie den Umrichter in jedem Fall mit beschaltetem Analogeingang.

Allgemeine Spezifikation

Maximale Kabellänge 30 m, geschirmt

Klemmenbeschreibung

Pin Bezeichnung		Bezeichnung	Funktion	Daten
	1	AE1+	+ Eingang des Analogeingangs AE1 Auflösung: 10 Bit + Vorz. Offset < 100 mV Toleranz < 50 mV	Bezug: Pin 3 $U_1 = \pm 10 \text{ V}$ $R_{int} = 40 \text{ k}\Omega$ U_{1max} gegen Pin 3 = 30 V U_{1max} gegen Schutzleiter = 15 V U_{1max} gegen AGND = 30 V
	2	AE1-Shunt	Stromeingang; Shunt-Anschluss Pin 2 ist mit Pin 1 zu brücken.	Bezug: Pin 3 $I_1 = \pm 20 \text{ mA}$ $R_{\text{int}} = 510 \Omega$
	3	AE1-	Invertierter Eingang des Analogeingangs AE1	U _{1max} gegen Pin 1 = 30 V U _{1max} gegen Schutzleiter = 15 V U _{1max} gegen AGND = 30 V
1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	AE2+	+ Eingang des Analogeingangs AE2; Auflösung: 10 Bit + Vorz. Offset < 100 mV Toleranz < 50 mV	Bezug: Pin 5 $U_1 = \pm 10 \text{ V}$ $R_{int} = 40 \text{ k}\Omega$ U_{1max} gegen Pin 5 = 30 V U_{1max} gegen Schutzleiter = 15 V U_{1max} gegen AGND = 30 V
	5	AE2-	Invertierter Eingang des Analogeingangs AE2	U _{1max} gegen Schutzleiter = 15 V U _{1max} gegen AGND = 30 V
	6	AA1	Analogausgang 1 Auflösung: 11 Bit + Vorz. Offset < 100 mV Toleranz < 50 mV	Bezug: Pin 8 I_{2max} = 10 mA R_{int} = 20 Ω
	7	AA2	Analogausgang 2 Auflösung: 11 Bit + Vorz. Offset < 100 mV Toleranz < 50 mV	
	8	AGND	Bezugsmasse für Analogsignale	_

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Klemmenbeschreibung X101

Allgemeine Spezifikation	
Maximale Kabellänge	30 m, geschirmt

Klemmenbeschreibung

Pin		Bezeichnung	Funktion	Daten	
	9	GND 18 V	Bezugsmasse für Pin 19	_	
	10	DGND	Bezugsmasse für Pin 11 bis 18	_	
	11	BE1			
	12	BE2		High-Pegel: 12 – 30 V	
10 10	13	BE3 ^{a)}	Binäreingang	Low-Pegel: $0 - 8 \text{ V}$ $U_{1\text{max}} = 30 \text{ V}$ $I_{1\text{max}} = 16 \text{ mA bei } U_{1\text{max}}$	
1121	14	BE4 ^{a)}			
014 15 °	15	BE5 ^{a)}		illiax illiax	
9 10 11 12 13 14 15 16 17 18 19 ====================================	16	BA1	Dinärauagang	$I_{2max} = 50 \text{ mA}$	
○	17	BA2	Binärausgang		
	18	24 V-In	24 V-Versorgung für Binärausgänge	Eingangsbereich: 18 – 28,8 V	
	19 18 V-Out Hilfsspannung 18 V		Hilfsspannung 18 V	$U_2 = 16 - 18 \text{ V}$ $I_{2\text{max}} = 50 \text{ mA}$	

a) BE3, BE4 und BE5 können als Encodereingang verwendet werden. Beachten Sie dazu das Kapitel 5.12.2 BE-Encoder und BA-Encodersimulation.

Maximaler Leiterquerschnitt

Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Information

Bei Ausfall der 24-V-Versorgung zeigen die Binäreingänge BE6 bis BE13 Signalzustand 0 (unabhängig vom physikalischen Signalzustand).

Klemmenbeschreibung X103D - LEA 5000

Allgemeine Spezifikation	
Maximale Kabellänge	30 m, geschirmt

Klemmenbeschreibung

Pin		Bezeichnung	Funktion	Daten
	+	+ 24 V	Spannungsversorgung	$U_{1max} = 20,4-28,8 \text{ V}$ $I_{1max} = 1,5 \text{ A}$
	-	GND	Spannungsversorgung	
○ + □	1	BA3		
	2	BA4		I _{2max} = 50 mA
○ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	BA5		
	4	BA6	Dinärauggang	
678	5	BA7	Binärausgang	
	6	BA8		
	7	BA9		
	8	BA10		

WE KEEP THINGS MOVIN

Projektierhandbuch POSIDRIVE® FDS 5000

Maximaler Leiterquerschnitt

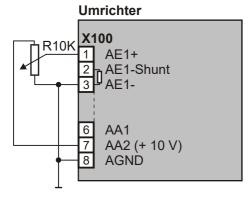
Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Klemmenbeschreibung X103E - LEA 5000

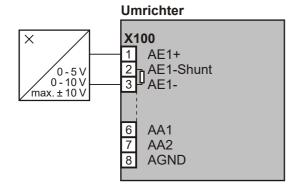
Allgemeine Spezifikation	
Maximale Kabellänge	30 m, geschirmt

Klemmenbeschreibung

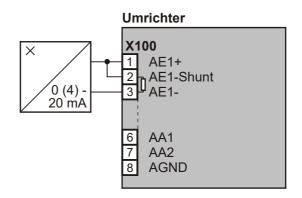
Pin	Bezeichnung		Funktion	Daten
	9	BE6		
	10	BE7		Bezug: Pin – (GND) von Klemme
9 0 10 0	11 DEQ	X103D		
9 10 11 12 13 14 15 16 1 1 12 13 14 15 16 1 1 1 1 1 1 1 1 1 1	12	BE9	Binareingang Lo	High-Pegel: 12 – 30 V
0 13 14 1 °	13	BE10		Low-Pegel: 0 – 8 V
○	14	BE11		$U_{1max} = 30 \text{ V}$ $I_{1max} = 3 \text{ mA bei } U_{1max}$
	15	BE12		
	16 BE13			

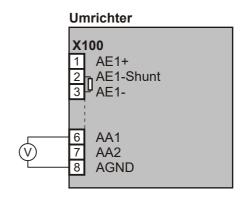


Maximaler Leiterquerschnitt


Anschlussart	Maximaler Leiterquerschnitt [mm²]
Starr	1,5
Flexibel	1,5
Flexibel mit Aderendhülse ohne Kunststoffhülse	1,5
Flexibel mit Aderendhülse mit Kunststoffhülse	0,5
2 Leiter gleichen Querschnitts mit Doppeladerendhülse	_

Anschlussbeispiele


Potentiometer


Spannung (max. ± 10 V)

Strom (0 - 20 mA, 4 - 20 mA)

Analog Ausgabe Spannung

Projektierhandbuch POSIDRIVE® FDS 5000

5.12 **Encoder**

Information

Bitte beachten Sie, dass die Encoderschnittstellen meist mehrere Systeme auswerten oder simulieren können, z. B. Inkrementalencoder HTL und TTL. Welches System Sie an einer Schnittstelle anschließen, geben Sie in den Parametern an. Beachten Sie dazu das Bedienhandbuch des Umrichters.

5.12.1 **X4**

ACHTUNG

Gefahr der Encoderzerstörung!

▶ X4 darf bei eingeschaltetem Gerät nicht gesteckt oder abgezogen werden!

Allgemeine Spezifikation		
U_2	15 – 16 V	
I _{2max}	300 mA	
Maximale Kabellänge	100 m	

Spezifikation Inkrementalencoder		
Encoderart	An X4 dürfen nur TTL- und HTL-Encoder mit N-Spur angeschlossen werden. Encoder ohne N-Spur erzeugen bei Geräteanlauf eine Störung.	
f _{max}	Auswertung: ≤ 1 MHz Simulation: < 250 kHz	
Signalpegel	TTL und HTL	

WE KEEP THINGS MOVING

Rechenbeispiel - Grenzfrequenz f_{max}

- ... für einen Encoder mit 2.048 Impulsen pro Umdrehung:
- 3.000 Umdrehungen pro Minute (entsprechen 50 Umdrehungen pro Sekunde) * 2.048 Impulse pro Umdrehung
- = 102.400 Impulse pro Sekunde
- = 102,4 kHz

Encoderversorgung

U ₂	Durch	Bemerkung
15–16 V	Pin 12 (Sense) nicht belegt	STÖBER-Asynchronmotoren
	Pin 12 (Sense) mit Pin 2 (GND) gebrückt	HTL-Encoder: Brücke im Kabelstecker ausgeführt, der an X4 angeschlossen wird.

Klemmenbeschreibung X4 für HTL-Encoder

Pin		Bezeichnung	Funktion, Daten
	1	B+	Differenzieller Eingang für B-Spur
5 .	2	GND	Bezug für die Encoderversorgung an Pin 4
Buchse	3	N+	Differenzieller Eingang für die N-Spur
	4	U_2	Encoderversorgung
	5	_	_
	6	A+	Differenzieller Eingang für die A-Spur
(O)	7	_	_
1 9	8	_	_
0000000	9	B-	Inverser, differenzieller Eingang für die B-Spur
8 15	10	N-	Inverser, differenzieller Eingang für die N-Spur
	11	A-	Inverser, differenzieller Eingang für die A-Spur
	12	Sense	Fühlerleitung für die Versorgungsspannung zum Ausregeln der Encoderversorgung
	13	_	_
	14	_	_
	15	_	_

Projektierhandbuch POSIDRIVE® FDS 5000

Klemmenbeschreibung X4 für TTL-Encoder

Pin		Bezeichnung	Funktion, Daten
	1	_	_
Buchse	2	GND	Bezug für die Encoderversorgung an Pin 4
	3	_	_
	4	U ₂	Encoderversorgung
	5	B+	Differenzieller Eingang für die B-Spur
(a)	6	_	_
100	7	N+	Differenzieller Eingang für die N-Spur
	8	A+	Differenzieller Eingang für die A-Spur
0000000	9	_	_
8015	10	Sense-	Bezug zu Sense-Signal an Pin 12
ര	11	_	_
رق	12	Sense+	Fühlerleitung für die Versorgungsspannung zum Ausregeln der Encoderversorgung
	13	B-	Inverser, differenzieller Eingang für die B-Spur
	14	N-	Inverser, differenzieller Eingang für die N-Spur
	15	A-	Inverser, differenzieller Eingang für die A-Spur

5.12.2 BE-Encoder und BA-Encodersimulation

Um Inkremental- oder Puls-/Richtungssignale single-ended auszuwerten, nutzen Sie die binären Eingänge BE3, BE4 und BE5. Möchten Sie diese simulieren, nutzen Sie die Ausgänge BA1 und BA2.

Allgemeine Spezifikation				
Maximale Kabellänge	30 m			
Signalpegel	HTL			

Auswertung – Inkrementalencoder und Puls-/Richtungsschnittstelle				
High-Pegel	12 – 30 V			
Low-Pegel	0 – 8 V			
U _{1max}	30 V			
I _{1max}	16 mA			
f _{max}	100 kHz			

Simulation – Inkrementalend	Simulation – Inkrementalencoder und Puls-/Richtungsschnittstelle			
I _{2max}	50 mA			
Eff. Updaterate	1 kHz			
f _{max}	250 kHz			
Extrapolationsfrequenz	1 MHz			

Rechenbeispiel – Grenzfrequenz f_{max}

... für einen Encoder mit 2.048 Impulsen pro Umdrehung:

3.000 Umdrehungen pro Minute (entsprechen 50 Umdrehungen pro Sekunde) * 2.048 Impulse pro Umdrehung

= 102.400 Impulse pro Sekunde

= 102,4 kHz

WE KEEP THINGS MOVING

Projektierhandbuch POSIDRIVE® FDS 5000

Klemmenbeschreibung X101 Inkrementalencoder und Puls-/Richtungsschnittstelle

Pin		Bezeichnung	Funktion	Daten
	9	GND 18 V	Bezugsmasse für Pin 19	—
	10	DGND	Bezugsmasse für Pin 11 bis 18	_
	11	BE1	_	_
	12	BE2	_	
	13	BE3	Auswertung: Inkrementalencoder: N Puls-/Richtungsschnittstelle: –	
9 10 11 12 0 0 11 12 0 0 11 12 0	14	BE4	Auswertung: Inkrementalencoder: A Puls-/Richtungsschnittstelle: Frequenz	
13 14 15 16 17 18 	15	BE5	Auswertung: Inkrementalencoder: B Puls-/Richtungsschnittstelle: Richtung	
8 6 6 6	16	BA1	Simulation Inkrementalencoder: A Puls-/Richtungsschnittstelle: Frequenz	_
	17	BA2	Simulation Inkrementalencoder: B Puls-/Richtungsschnittstelle: Richtung	
	18	24 V-In	24 V-Versorgung	Eingangsbereich: 18 – 28,8 V
	19	18 V-Out	Hilfsspannung 18 V	$U_2 = 16 - 18 \text{ V}$ $I_{2\text{max}} = 50 \text{ mA}$

5.13 Feldbus

5.13.1 X200: CANopen

Voraussetzung für die CANopen-Anbindung:

• CAN 5000

Information

Beachten Sie bitte die Ergänzungsdokumentation CANopen (siehe Kapitel 1.2 Weiterführende Dokumentationen)!

Klemmenbeschreibung X200

Pin		Bezeichnung	Funktion
	1	_	_
Stecker	2	CAN-low	CAN-Low Leitung
	3	GND	Signal Ground
(O)	4		_
5 0 9	5		_
	6	CAN-low	CAN-Low Leitung Intern mit Pin 2 verbunden
	7	CAN-high	CAN-High Leitung
	8	_	_
	9	CAN-high	CAN-High Leitung Intern mit Pin 7 verbunden



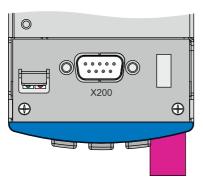
Abb. 5-1 Geräteoberseite mit Klemme X200

1 Interner Abschlusswiderstand 120 Ω zuschaltbar

5.13.2 X200: PROFIBUS

Voraussetzung für die PROFIBUS-Anbindung:

• DP 5000



Information

Beachten Sie dazu die Ergänzungsdokumentation PROFIBUS DP (siehe Kapitel 1.2 Weiterführende Dokumentationen)!

Klemmenbeschreibung X200

Pin		Bezeichnung	Funktion
	1		_
Buchse	2		_
	3	В	RxD / TxD-P (Sende / Empfangsdaten-Plus)
(O)	4	RTS	Richtungssteuerung für Repeater (Plus)
5 09	5	GND	Masse zu + 5 V
000	6	+5 V	Versorgung für Abschlusswiderstände
	7		_
	8	Α	RxD / TxD-N (Sende / Empfangsdaten-Minus)
	9		_

WE KEEP THINGS MOVING

Abb. 5-2 Geräteoberseite mit Klemme X200

5.13.3 X200, X201: EtherCAT

Voraussetzung für die EtherCAT-Anbindung:

ECS 5000

Information

Beachten Sie bitte die Ergänzungsdokumentation EtherCAT (siehe Kapitel 1.2 Weiterführende Dokumentationen)!

Klemmenbeschreibung X200 und X201

Pin		Bezeichnung	Funktion
	1	TxData+	EtherCAT-Kommunikation
	2	TxData-	
	3	RecvData+	
	4	_	_
	5	_	_
	6	RecvData-	EtherCAT-Kommunikation
	7	_	_
	8	_	_

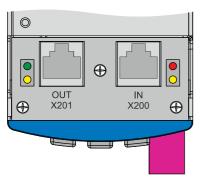


Abb. 5-3 Geräteoberseite mit Klemmen X201 und X200

Spezifikation - Kabel

STÖBER bietet konfektionierte Kabel für die EtherCAT-Verbindung. Nur bei der Verwendung dieser Kabel ist die einwandfreie Funktion gewährleistet.

Alternativ besteht die Möglichkeit, Kabel mit folgender Spezifikation zu verwenden:

Steckerverdrahtung	Patch oder Crossover
Qualität	CAT5e
Schirmung	SFTP oder PIMF

Projektierhandbuch POSIDRIVE® FDS 5000

5.13.4 **X200, X201: PROFINET**

Voraussetzung für die PROFINET-Anbindung:

PN 5000

Information

Beachten Sie bitte das Bedienhandbuch PROFINET (siehe Kapitel 1.2 Weiterführende Dokumentationen)!

Klemmenbeschreibung X200 und X201

Die Klemmenbelegung richtet sich nach T 568-B.

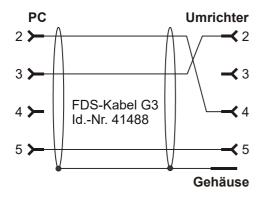
Pin		Bezeichnung	Funktion
	1	TxData +	PROFINET Kommunikation
	2	TxData -	
	3	RecvData +	
	4	_	Über RC-Glied mit Gehäuse verbunden
	5		
	6	RecvData -	PROFINET Kommunikation
	7		Über RC-Glied mit Gehäuse verbunden
	8		



Abb. 5-4 Geräteoberseite mit Klemmen X201 und X200

Beachten Sie zur Kabelspezifikation die PROFINET-Montagerichtlinie (PROFINET Order No. 8.071, Identification: TC2-08-0001); Sie erhalten das Dokument auf www.profibus.com.

X3: PC, USS 5.14


Mit der seriellen Schnittstelle X3 an der Frontseite des Umrichters realisieren Sie die Verbindung zum PC oder USS. Der Aufbau der PC-Verbindung wird im Bedienhandbuch des Umrichters beschrieben.

Klemmenbeschreibung X3

Pin Bez		Bezeichnung	Funktion	Daten
	1	+10 V	Versorgung für Controlbox	I _{2max} = 30 mA
Stecker	2	Rx	Kommunikation: Empfangsinput	_
	3	nc	Intern belegt, nicht ansteuern!	_
(a)	4	Tx	Kommunikation: Sendeoutput	_
5 0 9	5	SG	Bezugspotential für Pin 2 und 4	_
	6	nc	Intern belegt, nicht ansteuern!	_
	7	nc		
	8	nc		
	9	nc		

Spezifikation Kabel

STÖBER bietet konfektionierte Kabel für die Verbindung zum PC an. Nur bei der Verwendung dieser Kabel ist die einwandfreie Funktion gewährleistet. Beachten Sie dazu Kapitel 7 Zubehör.

5.15 Kabel

Information

Zur Sicherstellung einer störungsfreien Funktion des Antriebs empfehlen wir, auf das System abgestimmte Kabel von STÖBER zu verwenden. Beim Einsatz ungeeigneter Anschlusskabel behalten wir uns den Ausschluss der Gewährleistungsansprüche vor.

5.15.1 Encoderkabel

5.15.1.1 Encoder HTL

HTL-Inkrementalencoder können mit STÖBER Asynchronmotoren kombiniert werden. Das passende Encoderkabel ist nachfolgend beschrieben.

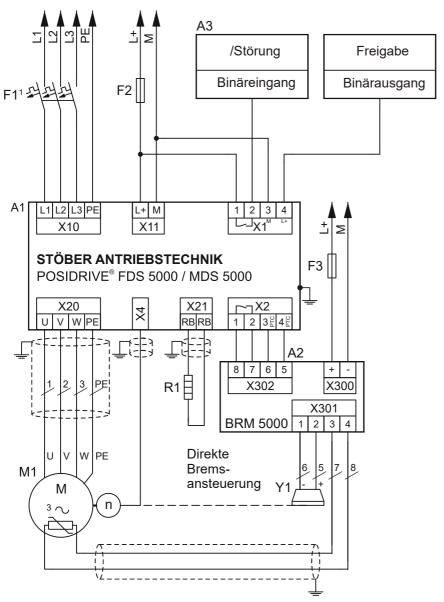
Encoderkabel - Steckverbinder con.23

Motor		Signal	Aderf	arben	Sub-D (X4)
Winkelflanschdose	Pin		Motorintern	Encoder	Pin
	1	B-	PK	YE	9
	2	<u>—</u>		<u>—</u>	
	3	N+	RD	PK	3
	4	N-	BK	GY	10
90 80	5	A+	BN	BN	6
7	6	A-	GN	WH	11
(2010 P 92 6)	7	_	_	_	_
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	8	B+	GY	GN	1
30,105//	9		_		
	10	GND	WH	BU	2
	11	<u>—</u>		<u>—</u>	
	12	U_2	BN	RD	4
	Gehäuse	Schirm			

Abmessungen – Steckergröße con.23

Länge [mm]	Durchmesser [mm]
58	26

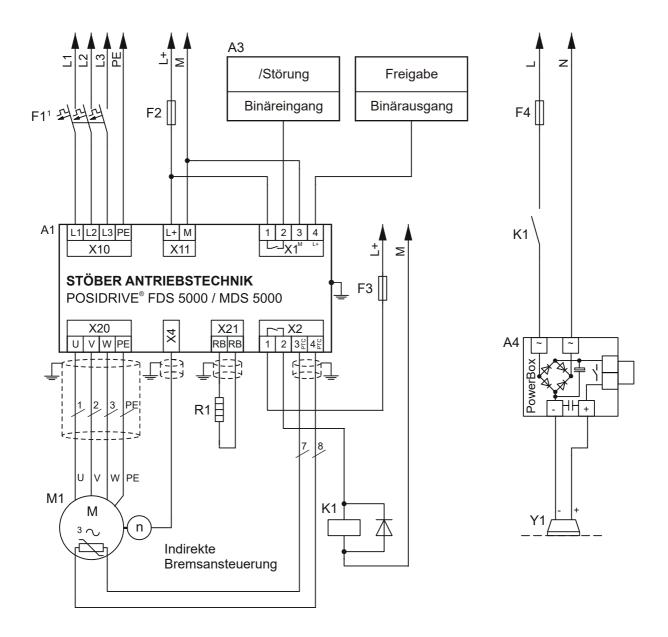
Kabelfarbe - Legende


BK	BLACK (schwarz)	PK	PINK (rosa)
BN	BROWN (braun)	RD	RED (rot)
BU	BLUE (blau)	VT	VIOLET (violett)
GN	GREEN (grün)	WH	WHITE (weiß)
GY	GREY (grau)	YE	YELLOW (gelb)
OG	ORANGE (orange)		

Verschaltungsbeispiele

Projektierhandbuch POSIDRIVE® FDS 5000

6 Verschaltungsbeispiele



¹ Leitungsschutz Auslösecharakteristik C

Verschaltungsbeispiele

Projektierhandbuch POSIDRIVE® FDS 5000

¹ Leitungsschutz Auslösecharakteristik C

7 Zubehör

E/A-Klemmenmodul LEA 5000

ld.-Nr. 49029

Klemmen:

- 8 binäre Eingänge
- 8 binäre Ausgänge

Bremsmodul BRM 5000

Id.-Nr. 44571

Bremsmodul für Umrichter der Baureihen FDS 5000 und MDS 5000.

Zubehörteil zur Ansteuerung einer Motor-Haltebremse (24 V/DC) und – für Umrichter bis Baugröße 2 – zur Schirmanbindung des Leistungskabels.

Anbaubar an das Grundgehäuse. Inklusive Schirmanschlussklemme.

Technische Daten			
Leistungskabelquerschnitt	1 bis 4 mm ²		
Max. Schirmdurchmesser	12 mm		
Min. Schirmauflagefläche (abisolierter Teil des Leistungskabels)	15 mm		

EMV-Schirmblech EM 5000

Id.-Nr. 44959

EMV-Schirmblech für die Baugrößen 0 bis 2. Zubehörteil zur Schirmanbindung der Motorleitung. Anbaubar an das Grundgehäuse. Inklusive Schirmanschlussklemme.

Technische Daten			
Leistungskabelquerschnitt	1 bis 4 mm²		
Max. Schirmdurchmesser	12 mm		
Min. Schirmauflagefläche (abisolierter Teil des Leistungskabels)	15 mm		

Feldbusmodul CANopen DS-301 CAN 5000

ld.-Nr. 44574

Zubehörteil zur Ankopplung von CAN-Bus.

Feldbusmodul PROFIBUS DP-V1 DP 5000

Id.-Nr. 44575

Zubehörteil zur Ankopplung von PROFIBUS DP-V1.

Zubehör

Projektierhandbuch POSIDRIVE® FDS 5000

Feldbusmodul EtherCAT ECS 5000

Id.-Nr. 49014

Zubehörteil zur Ankopplung von EtherCAT (CANopen over EtherCAT).

EtherCAT-Kabel

EtherNet-Patchkabel, CAT5e, gelb.

Folgende Ausführungen sind verfügbar:

Id.-Nr. 49313: ca. 0,2 m. Id.-Nr. 49314: ca. 0,35 m.

Feldbusmodul PROFINET PN 5000

Id.-Nr. 53893

Zubehörteil zur Ankopplung von PROFINET.

ASP 5001 - Sicher abgeschaltetes Moment

Mit der Standardausführung erhältlich.

Optionsmodul zur Umsetzung der integrierten Sicherheitsfunktion Safe Torque Off (STO). Der Einbau der ASP 5001 darf nur durch STÖBER Antriebstechnik GmbH + Co. KG durchgeführt werden! Die Bestellung der ASP 5001 muss mit dem Grundgerät erfolgen.

Verbindungskabel G3

Id.-Nr. 41488

Beschreibung: Verbindung Umrichter an der Klemme X3 und dem PC, Sub-D-Stecker, 9polig, Buchse/Buchse, ca. 5 m.

USB-Adapter auf RS232

Id.-Nr. 45616

Adapter für die Kopplung von RS232 auf einen USB-Anschluss.

Controlbox

Bediengerät zur Parametrierung und Bedienung der Umrichter.

Das Verbindungskabel mit einer Länge von 1,5 m ist im Lieferumfang enthalten.

Folgende Ausführungen sind verfügbar:

Id.-Nr. 42224: Servicevariante.

Id.-Nr. 42225: Einbau-DIN-Gehäuse 96 x 96 mm, Schutzart IP54.

Kabel Controlbox

Verbindungskabel von Controlbox zum Umrichter.

Folgende Ausführungen sind verfügbar:

Id.-Nr. 43216: 5 m. Id.-Nr. 43217: 10 m.

Zubehör

Projektierhandbuch POSIDRIVE® FDS 5000

Paramodul

In der Standardausführung enthalten.

ld.-Nr. 55463

Speichermodul für Konfiguration und Parameter.

Weltweite Kundennähe

Adressenverzeichnisse

Immer aktuell im Internet: <u>www.stober.com</u> (Kontakt)

- Technische Büros (TB) für Beratung und Vertrieb in Deutschland
- Weltweite Präsenz für Beratung und Vertrieb in über 25 Ländern
- · Servicepartner Deutschland
- Service Network International
- STÖBER Tochtergesellschaften:

USA

STOBER DRIVES INC. 1781 Downing Drive 41056 Maysville Fon +1 606 759 5090 sales@stober.com www.stober.com

Österreich

STÖBER ANTRIEBSTECHNIK GmbH Hauptstraße 41a 4663 Laakirchen Fon +43 7613 7600-0 sales@stoeber.at www.stoeber.at

Großbritannien

STOBER DRIVES LTD.
Centrix House
Upper Keys Business Village
Keys Park Road, Hednesford
Cannock | Staffordshire WS12 2HA
Fon +44 1543 458 858
sales@stober.co.uk
www.stober.co.uk

Türkei

STOBER Turkey Istanbul Fon +90 212 338 8014 sales-turkey@stober.com www.stober.com

Schweiz

STÖBER SCHWEIZ AG Rugghölzli 2 5453 Remetschwil Fon +41 56 496 96 50 sales@stoeber.ch www.stoeber.ch

Frankreich

STOBER S.a.r.I.
131, Chemin du Bac à Traille
Les Portes du Rhône
69300 Caluire-et-Cuire
Fon +33 4 78.98.91.80
sales@stober.fr
www.stober.fr

China

STOBER China
German Centre Beijing Unit 2010,
Landmark Tower 2 8 North
Dongsanhuan Road
Chaoyang District BEIJING 10004
Fon +86 10 6590 7391
sales@stoeber.cn
www.stoeber.cn

Taiwan

STOBER Branch Office Taiwan sales@stober.tw www.stober.tw

Italien

STÖBER TRASMISSIONI S. r. l. Via Italo Calvino, 7 Palazzina D 20017 Rho (MI) Fon +39 02 93909570 sales@stober.it www.stober.it

Südostasien

STOBER South East Asia sales@stober.sg www.stober.sg

Japan

STOBER JAPAN K. K. Elips Building 4F, 6 chome 15-8, Hon-komagome, Bunkyo-ku 113-0021 Tokyo Fon +81 3 5395 6788 sales@stober.co.jp www.stober.co.jp

STÖBER Antriebstechnik GmbH + Co. KG

Kieselbronner Str. 12 75177 PFORZHEIM GERMANY Fon +49 7231 582-0 mail@stoeber.de

24 h Service Hotline +49 7231 5823000

www.stober.com

Technische Änderungen vorbehalten Errors and changes excepted ID 442268.10 08/2020

